

1

THE ULTIMATE SWIFTUI
LAYOUT COOKBOOK

F I R S T E D I T I O N

KARIN PRATER

1. Working with SwiftUI in Xcode	 ..8

1.1 Showing previews in Xcode	 ..8

1.2 Working with the Canvas in Xcode	 ...13

1.3 Quick and Efficiently Edit SwiftUI Views	 ..18

1.4 Debugging layout issues	 ..20

1.5 SwiftUI Tree of Doom	 ..23

1.6 Typical problems with Xcode and swiftui and how to fix them	 25

2. Primitive Layout Components	 ...27

2.1 VStack, HStack and ZStack	 ...27

2.2 Divider and Spacer	 ...30

2.3 Group	 ..33

2.4 GroupBox	 ..34

2.5 ControlGroup	 ...36

3. Layering Views	 ...38

3.1 Background Modifier	 ...38

3.2 Overlay modifier	 ...42

3.3 ZStack vs background/overlay	 ..44

3.4 Color view	 ..46

3.5 Gradients	 ...48

3.6 Materials	 ..50

4. Positioning Views	 ...53

4.1 How to position views	 ..53

4.2 Alignment Guides	 ..57

4.3 Custom Alignment Guides	 ..60

4.4 Grid View	 ...66

4.5 Position and Offset Modifiers	 ...70

5. Sizing Views	 ...73

5.1 How the layout system sizes and positions views	 ...73

5.2 Fixed and Flexible Frames	 ...78

5.3 FixedSize	 ...82

5.4 Layout Priority	 ..84

5.5 Sizing Text Views	 ..86

5.6 Sizing Images	 ...89

2

5.7 Upscaling images and Bitmap vs Vector graphics	 ...93

5.8 Sizing System Icons	 ..95

5.9 AsyncImage	 ...97

5.10 Aspect Ratio	 ..103

5.11 Scale Effect	 ...104

5.12 Content Edges: Safe area, Padding and Margins	 ...106

5.13 Container Relative Frame	 ...109

5.14 CornerRadius, Clip and Mask	 ...113

Challenge 🖐 Superhero Detail View	 ..116

6. Reusable Layout Components	 ...118

6.1 Making Your SwiftUI Views More Reusable	 ...118

6.2 Reusable View Modifiers	 ..121

6.3 ButtonStyle	 ...124

6.4 Custom Container Views	 ..126

6.5 Custom Containers with Dynamic Data	 ...128

7. Custom Layout	 ..131

7.2 GeometryReader	 ...131

7.3 Example: Custom Container with GeometryReader	 ..139

7.4 PreferenceKeys	 ..141

7.5 Bounds Measurement with PreferenceKeys and GeometryReader	 145

7.6 Layout Protocol	 ..149
7.7 Layout Example: Equal Width HStack and VStack	 ..156

7.8 Layout Example: Flow Layout	 ..157

7.9 Layout Example: Radial Layout	 ..159

7.10 Custom Layout with Layout Priority	 ...161

7.11 Custom Layout for Image Gallery	 ...163

8. Dynamic Data	 ...169

8.1 ForEach	 ..169

8.2 identifiable Data	 ..172

8.3 Making Enums Identifiable	 ...173

8.4 ForEach with Binding	 ...176

8.5 LazyVStack and LazyHStack	 ..178
8.6 Lazily Showing Images	 ...180

3

8.7 Smooth ScrollViews with Images	 ...185

8.8 LazyVGrid and LazyHGrid	 ...191

8.9 Image Gallery with LazyVGrid and LazyHGrid	 ...196

8.10 Infinitive Loading View	 ...200

Challenges 🖐 	 ..203

9. ScrollView	 ..210

9.1 Why Use ScrollView?	 ...210

9.2 CustomizIng The Appearance of ScrollView	 ...211

9.3 Scroll Direction	 ..215

9.4 Scroll Content Size	 ..216

9.5 Scroll Behaviour	 ..219

9.6 Programmatic Scrolling with ScrollViewReader	 ..221

9.7 ScrollView Position	 ..224
9.8 Synchronizing Multiple ScrollViews	 ...226

9.9 Default Scroll Position	 ...232

9.10 ScrollView Animations with ScrollTransition	 ...235

9.11 Animations with VisualEffect	 ...241
9.12 Parallax Example	 ...245

9.13 Background Parallax Effect	 ...248

9.14 Pinned Views	 ...251

Challenge 🖐 ScrollView	 ...254

Custom Picker View Challenge	 ...256

10. Adaptive Layout	 ...261

10.1 Why You Need Adaptive Layout	 ...261

10.2 What is the Available Space	 ..264

10.3 Interface Size Classes	 ..268

10.4 Environment Values	 ...271

10.5 Environment vs PreferenceKeys	 ..272

10.6 Dynamic Type Size	 ..276

10.7 Scaled Metric	 ..281

10.8 Conditional View Modifiers	 ..283

10.9 AnyLayout - Switching Between Layout Containers	 ...285

10.10 ViewThatFits	 ..287

4

10.11 ViewThatFits Example 1	 ...289

10.12 ViewThatFits Example 2	 ...291

10.13 ViewThatFits Example 3	 ..293

10.14 Keyboard Layout Adjustments	 ...295
10.15 Keyboard & Background Image	 ..298

10.16 Keyboard & Forms	 ..301

10.17 Keyboard toolbar	 ...302

10.18 Summary Responsive Design	 ..305

10.19 Summary Adaptive Design	 ...305

11. Special System Containers	 ..306

11.1 OverView of System Containers	 ..306

11.2 Adding macOS Target	 ...307

11.3 List	 ..310
11.3.1 ListStyle	 ...315

11.3.2 List Row Background	 ..317

11.3.3 List Row Insets and Separators	 ..319

11.3.4 Move and Delete	 ...322

11.3.5 List Selection	 ..326

Challenge 🖐 NavigationSplitView with Lists	 ...330

11.4 Structuring Lists	 ..335
11.4.1 Sections	 ..335

11.4.2 Collapsable Sections	 ..338

11.4.3 Hierarchical Lists	 ..341

11.5 Form	 ...344
11.5.2 Example: Settings View	 ..347

11.5.3 Example: Registration Form	 ..350

11.5.4 Example: Inspector	 ..352

11.6 Table	 ..355
11.6.1 Creating a Table with SwiftUI	 ...356

11.6.2 Table Styling	 ...358

11.6.3 Edit Table Data	 ..361

11.6.4 Selecting Table Rows	 ...363

11.6.5 Sorting and Filtering	 ..366

5

Welcome to The Ultimate SwiftUI Layout Book!

I made this book to help you find your way around SwiftUI's layout parts easily. You can learn at your
speed, jumping into different sections as needed, like a cookbook for coding. It's packed with examples
that you can use right away, saving you time.

How to use the Book and Course together

If you want to dive deeper, check out my course, where I walk you through everything step by step.
Everything in the book matches up with the SwiftUI Layout Course, making it easy to follow along.

Sometimes, reading is not enough, and seeing a code walkthrough in a video is much better for
understanding. That is why I added links to all major section headings. If you get stuck in a section, just
click on the heading and watch the corresponding video. This is especially useful for e.g. interactions or
animations like in 9.12 Parallax Example

Don't have access to the Layout course yet? Upgrade and use code “LAYOUTMASTERY” to get $20 off.

11.6.6 DisclosureTableRow	 ...371

11.6.7 Cross-platform	 ..374

Challenge 🖐 Layout Variations	..377

6

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course

How to work with the Project Files

The structure of this book is the same as the companion project. If you want to find the code in the
project, you can also use the file names from the code snippets:

and search in Xcode for the corresponding file: 

7

1 . W O R K I N G W I T H S W I F T U I I N XC O D E

1 .1 S H O W I N G P R E V I E W S I N XC O D E

In this section, I will guide you on effectively working with Xcode for SwiftUI. Previews have changed with
Xcode 15 and use now the Preview macro, whereas before you had to use the PreviewProvider. I will give
you examples of both of these features.

Showing and Hiding the Canvas

By default, the canvas is not shown on the right side. To show or hide the canvas, go to the top-right
corner and click on the inspector. You can also use the keyboard shortcut Option + Command + Return.

Sometimes, when you make changes to your code, the preview may not refresh properly or may not be
visible. In such cases, you can use the keyboard shortcut Option + Command + P to recreate the
preview.

By default, the layout is set to automatic. You can choose between having the canvas on the right or
below the editor by selecting the appropriate option. This allows you to maximize the space based on
your preferences and the size of the views.

8

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/1-1-showing-previews-in-xcode

Preview Macro

The new preview macro has made it simpler and shorter in Xcode previews and is available for Xcode 15:

#Preview {
 ContentView()
}

When you generate a new file, such as using the SwiftUI view template, Xcode automatically generates a
preview section for that file.

If your project's minimum deployment target is lower than iOS 17 or macOS 14, you need to add a
version check before the preview:

@available(iOS 17.0, macOS 14.0, tvOS 17.0, watchOS 10.0, *)
#Preview {
 ContentView()
}

When working with multiple previews, it is important to ensure that you pass the correct arguments to the
views. You can generate multiple previews by using the “preview” macro multiple times. Each preview

9

can only specify one view. If you need to test different input values, you can create multiple previews with
varying arguments.

import SwiftUI

struct TitleView: View {
 let title: String
 var body: some View {
 Text(title)
 .font(.largeTitle)
 .bold()
 .underline()
 }
}

#Preview("short title") {
 TitleView(title: "Hello world")
}

#Preview("Long title") {
 TitleView(title: "This is a very, very, very long title")
}

To organize your previews, you can give them names. This helps in distinguishing between different
previews and provides a clear description of their purpose.

10

Additionally, you can set traits. In the below example, I used a “sizeThatFitsLayout”. This is useful when
you have very small views and you don’t want to show them on a device. Note that this only works when
you are in the selectable preview.

#Preview("short title") {
 TitleView(title: "Hello world")
}
#Preview("Long title") {
 TitleView(title: "This is a very, very, very long title")
}

#Preview("medium title", traits: .sizeThatFitsLayout) {
 TitleView(title: "This is a title")
}

Here is a list of all the available traits:

• fixedLayout(width: CGFloat, height: CGFloat) and sizeTahtFitsLayout

• portrait and portraitUpsideDown

• landscapeLeft and landscapeRight

11

PreviewProvider

You may come across the preview provider if you are working with an older project that started before
Xcode 15.

struct ContentView_Previews: PreviewProvider {
 static var previews: some View {
 ContentView()
 }
}

You can show multiple previews in the canvas:

struct ContentView_Previews: PreviewProvider {
 static var previews: some View {
 Group {
 ContentView()
 .previewLayout(.sizeThatFits)
 ContentView()
 }
 }
}

The preview can be customized by adding preview modifiers:

struct ContentView_Preview: PreviewProvider {
 static var previews: some View {
 ContentView()
 .previewLayout(.sizeThatFits)
 .previewDisplayName("preview provider")
 }
}

Change Environment variables:

Modifier for minimum size .previewLayout(.sizeThatFits)

Modifier for fixed size .previewLayout(.fixed(width: 600, height: 200))

Set specific device type .previewDevice(PreviewDevice(rawValue: "iPhone 8"))

Set display name tab .previewDisplayName("show Iphone 8")

Change to dark mode .environment(\.colorScheme, .dark)

Change dynamic text .environment(\.sizeCategory, .accessibilityLarge)

12

1 . 2 W O R K I N G W I T H T H E C A N VA S I N XC O D E

In this section, we will explore the various features and options available in the Canvas in Xcode. The
Canvas provides a real-time preview of your SwiftUI layout, allowing you to quickly iterate and test your
designs.

At the bottom of the Canvas, you will find a range of options to enhance your previewing experience.
Let’s take a closer look at each of these features:

Zooming and Fit on Screen

On the right side of the Canvas, you can find options to zoom in or fit the layout on the screen. These
options help you view your design more closely or fit it to the available space.

13

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/1-2-working-with-the-canvas-in-xcode

Device Preview

The toggle next to the zoom options allows you to select the device for the preview. By default, the
preview matches the device selected for your run target.

However, you can choose to manually select a specific device or let Xcode automatically switch the
preview based on your run target.

14

Real Device Preview

In addition to the built-in device previews, you can also use your actual iOS device to preview your
SwiftUI layout. To enable this feature, you need to install the Xcode Previews app on your device and
allow it in developer mode. Please note that there may be some connectivity issues, so ensure your
device is plugged in for a reliable connection.

Device Settings

The “Device Settings” option allows you to customize the preview environment further. You can set
specific color schemes, test landscape or portrait orientations, and even experiment with dynamic type
sizes. These settings help you ensure your layout adapts well to different scenarios.

Variants

To make testing and debugging more efficient, Xcode offers variants for color schemes, orientations,
and dynamic type sizes. By enabling variants, you can compare different options side by side and
quickly identify any issues or inconsistencies in your layout.

15

Selectable Preview

In the canvas area choose the second button in the bottom left corner to use the selectable preview
feature. You can double-click on a specific view to highlight the corresponding code in the editor. This
feature is particularly useful when working with complex views or collections, as it helps you identify
which code snippets correspond to which views.

Live Preview

The live preview feature is handy for testing animations and interactions in real time. It allows you to see
how your views respond to user interactions, such as tapping a button or scrolling a scroll view.

16

Debugging with Print Statements

To aid in debugging, the live preview also supports the use of print statements. You can add print
statements to your code and observe the output in the debug area of the preview. This helps you verify if
certain actions are being executed or if specific code paths are being triggered.

Pin Previews

In Xcode, you have the option to pin previews. This allows you to work in the context of a specific view,
even when navigating between different files. Pinned previews are displayed at the top and can be easily
accessed for quick reference. If you want to remove pinned previews, simply tap on the pin button again.

17

1 . 3 Q U I C K A N D E F F I C I E N T LY E D I T S W I F T U I V I E W S

One of the challenges we often face with SwiftUI is locating the tools we need to make changes to our
views. It can be frustrating trying to figure out what can be modified and how to modify it.

SwiftUI Inspector

Simply control-click on an element and select “Show SwiftUI Inspector.” This brings up a panel where
you can quickly modify properties such as accessibility labels, paddings, frames, and even add additional
modifiers like blur effects. You can also find these modifications in the editor, where they are represented
as lines of code.

Attribute Inspector area

Another useful tool is the Attribute Inspector area, where you can find a list of arguments and modifiers
for a particular view. Here, you can scroll through and easily make changes to properties such as
accessibility labels, padding, and more.

18

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/1-3-quick-and-efficiently-edit-swiftui-views

Xcode Auto Suggestions

Xcode has also become smarter in suggesting modifiers based on the context. For example, when
working with a button, Xcode may suggest using a frame, navigation title, or padding. Similarly, when
working with text, it may suggest using a multiline text alignment. These suggestions can save you time
and effort in finding the right modifiers for your views.

Xcode Library

If you prefer a visual approach, you can utilize the Xcode library by clicking on the plus button. Here,
you’ll find a collection of icons, symbols, assets, colors, images, and code snippets. The library is
organized into categories such as modifiers, effects, layout, text, images, list, navigation, and styling. This
allows you to quickly browse through different options and easily add them to your code.

By familiarizing yourself with these built-in tools and resources, you can save valuable time that would
otherwise be spent searching and googling for solutions. The documentation, in particular, can provide
inspiration and helpful code snippets to enhance your SwiftUI skills.

19

1 . 4 D E B U G G I N G L AYO U T I S S U E S

Debugging layout issues with SwiftUI can be a challenging task. I’m here to guide you through some
helpful strategies that will make the process much easier.

Using the Selectable Preview

One useful tool for debugging layout issues is the inspector. By selecting a view, you can access
information about its size and other properties. For example, you can identify if there is excessive
padding causing unexpected spacing between views. By removing or adjusting the padding, you can
resolve the issue and achieve the desired layout.

Adding Borders And Background Colors

Additionally, if you have multiple views that could be causing the problem, such as text or buttons, you
can add borders or background colors to visually differentiate them. This allows you to pinpoint the
specific view that needs adjustment. By zooming in and examining the highlighted view, you can identify
any padding modifiers, frames, or offsets that may be causing layout inconsistencies.

Debug View Hierarchy

Understanding the view hierarchy is crucial for debugging layout issues. SwiftUI provides a debug view
hierarchy feature that allows you to visualize the stack of views used in your project. By using this feature,
you can navigate through the hierarchy and gain insights into how views are structured.

For example, if you want to locate where a specific title is defined, you can use the debug view hierarchy.
By selecting the title, you can trace back to its parent views and identify the content view responsible for
its creation. This feature is especially helpful when dealing with layered views or complex layouts.

2 0

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/1-4-debugging-layout-issues

Run your project and select the “Debug View Hierarchy” button at the bottom of the Xcode window:

Xcode will pause the simulator and open the Debug View Hierarchy. In the left navigator pan you can
select the views and layers:

21

Monitoring View Updates

Sometimes, you may encounter performance issues or frequent redrawing without understanding which
views are causing the problem. In such cases, it’s useful to monitor view updates and identify which
views are being recreated. You can achieve this by using the print changes statement:

struct TitleView: View {
 let title: String

 var body: some View {
 Self._printChanges()
 return Text(title)
 .font(.largeTitle)
 .bold()
 .underline()

 }
}

Thus, you can track how many times the view is recreated or updated. This can provide valuable insights
into the impact of changes on specific views.

By observing the print statements in the debugger, you can determine which views are being updated
and how often. This helps you understand the relationship between view updates and potential layout
issues.

2 2

1 . 5 S W I F T U I T R E E O F D O O M

When working with SwiftUI, you may encounter situations where your views become large and
complex, leading to slow previews or unhelpful error messages from Xcode. This is commonly referred to
as the “tree of doom” in SwiftUI, where nesting levels can become overwhelming. Here are a few
strategies to work against this.

Extracting Subviews

To simplify the view hierarchy, you can use the “Extract Subview” feature by Ctrl-clicking on the
problematic view. This will extract the view into a separate subview. You can then rename it to something
more meaningful. Personally, I prefer moving these subviews to separate files rather than leaving them
within the same file. This way, I can easily navigate through each view file and see its preview directly. It
also prevents the subviews from getting lost amidst the main view code.

Small Views

Remember, it’s always beneficial to break down your views into smaller, more manageable pieces.
Personally, I find it helpful to keep the body of a view smaller than 100 lines. However, you should
experiment and find what works best for you, as everyone’s preferences and project requirements may
vary.

Code Highlighting

If you encounter long containers, such as a VStack with numerous subviews, it can be challenging to
identify where the container ends. To solve this, you can utilize Xcode’s highlighting feature. By clicking
on the curly braces at the beginning of the container, Xcode will highlight the corresponding closing curly
brace, indicating the end of the container. This helps in making changes or adding modifiers to the
container.

2 3

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/1-5-swiftui-tree-of-doom

Folding Ribbons

In cases where your code extends beyond the visible area, you can make use of the code folding ribbons.
These ribbons allow you to hide or show specific sections of your code, making it easier to focus on the
relevant parts.

To enable or disable the ribbons, go to Xcode settings, specifically the “Text Editor” area, and toggle the
“Show Code Folding Ribbons” option.

By simplifying your complex SwiftUI views, you can enhance the performance of previews, reduce errors,
and make your code more maintainable. So, don’t just rely on Xcode’s default behavior, take control of
your code and make it more understandable and efficient.

2 4

1 . 6 T Y P I C A L P R O B L E M S W I T H XC O D E A N D S W I F T U I A N D
H O W T O F I X T H E M

Sometimes, while working with Xcode and SwiftUI, you may encounter certain issues that can be a bit
frustrating. Unfortunately, Xcode doesn’t always provide the most informative error messages. In this
section, I will walk you through some common scenarios for errors, explain why they occur, and show you
how to resolve them.

Invalid Redefinition of View Names

One error that you might come across is when you have a view with the same name declared multiple
times. For instance, if you copy a struct called “LayeredView” to your ContentView, you will get an error
message saying “invalid redeclaration of LayeredView.” This error occurs because you have already
declared a view with the same name. To fix this, you can use the search function to locate the duplicate
view and rename it accordingly.

Uninitialized Properties

Another issue you might encounter is when you have a property declared within a struct but it is not
initialized. Xcode will display an error message stating “property declared as object return type but has no
initializer.” To resolve this error, you need to provide an initial value for the property. Even if it’s just a
placeholder like a Text view, it will help Xcode infer the underlying type correctly.

Missing Return Value for Text Views

Similarly, you might face problems when using Text views. If you don’t return anything within the body
property, an error will be thrown. For example:

To fix this, make sure to return a view within the body property. You can use a Text view with some
content, even if it’s temporary. However, it’s best practice to declare constants or computed values
outside of the body property for better code organization.

2 5

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/1-6-typical-problems-with-xcode-and-swiftui-and-how-to-fix-them
https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/1-6-typical-problems-with-xcode-and-swiftui-and-how-to-fix-them

Missing Environment Objects in SwiftUI Previews

If you use environment objects in your views or subviews, make sure to also add them in the preview.
Similarly, you need to inject a context when working with CoreData or SwiftData:

#Preview {
 ContentView()
 .environment(MyViewModel())
 .environment(\.managedObjectContext, NewContext())
}

Troubleshooting Tips

If you encounter persistent issues and can’t figure out the problem, here are a few troubleshooting tips:

1. Uncomment the views you just created and implement them one by one to identify any potential
errors.

2. Clean the build folder by going to Product > Clean Build Folder and then rebuild your project.

3. Sometimes, running the project instead of relying solely on the preview can help resolve issues.

4. In extreme cases, restarting Xcode or even your Mac might be necessary to resolve stubborn
issues.

Overall, Xcode previews with the Canvas feature are incredibly useful and can save you a lot of time. In
the upcoming lessons, you will see how these previews can streamline your development process by
eliminating the need to build and run your project repeatedly. 

2 6

2 . P R I M I T I V E L AYO U T C O M P O N E N T S

2 .1 V S TA C K , H S TA C K A N D Z S TA C K

VStack - Vertical Stacking

VStack is a container view that arranges its child views vertically. To create a VStack, you can use the
“Embed in VStack” option after control-clicking on the view. By default, a VStack adjusts its size to fit its
child views. The size of the VStack is determined by the space occupied by its children.

You can customize the alignment and spacing of the child views within the VStack. For example, you can
align the views to the leading edge and set a spacing of 20 between them. Additionally, you can nest
multiple VStacks to create more complex layouts.

VStack(alignment: .center,
 spacing: 10) {

 Text("first item")
 .background(Color.yellow)

 Text("second item")
 .background(Color.red)

 Text("third item")
 .background(Color.gray)
}

HStack - Horizontal Stacking

HStack is a container view that arranges its child views horizontally. Similar to VStack, you can use the
"Embed in HStack” option to create an HStack. The alignment property of an HStack determines how the
child views are aligned vertically.

You have various alignment options available such as center, top, bottom, first text baseline, and last text
baseline. These options allow you to align the child views based on their text baselines or other criteria.
By changing the font size or adding different-sized views, you can observe the effects of alignment within
an HStack.

2 7

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/2-1-vstack-hstack-and-zstack

HStack(alignment: .firstTextBaseline,
 spacing: 10) {

 Text("first item”)
 .background(Color.yellow)

 Text("second item")
 .background(Color.red)

 Text("third item")
 .background(Color.gray)
}

ZStack - overlay stacking

ZStack is a container view that stacks its child views on top of each other, creating a layered effect. The
order in which the child views are added to the ZStack determines their stacking order, with the first view
being the furthest behind.

You can adjust the stacking order using the zIndex view modifier or by changing the order of the child
views. Additionally, you can customize the alignment of the child views within the ZStack, such as top,
leading, center, or combinations of them.

ZStack(alignment: .center) {
 Text("first item")
 .padding(.vertical, 20)
 .background(Color.yellow)
 .zindex(2)

 Text("second item")
 .padding(.vertical, 10)
 .background(Color.red)

 Text("third item")
 .background(Color.gray)
}

You can also use the alignment property to align the views within the ZStack.

For Text views, you might also want to use .leadingLastTextBaseline, and .trailingFirstTextBaseline
etc.

2 8

ZStacks are particularly useful when you want to overlay views on top of each other. You can use them to
create visually appealing effects, such as combining images with text or applying gradients and
backgrounds.

struct CatExampleView: View {
 var body: some View {
 ZStack(alignment: .bottomLeading) {
 ResizableImageView(imageName: "cat_1")

 Text("Cats are awesome")
 .font(.title).bold()
 .background(Color.white)
 .padding()
 }
 }
}

2 9

2 . 2 D I V I D E R A N D S PA C E R

In this section, we will explore two fundamental layout views in SwiftUI: dividers and spacers. These
views play a crucial role in organizing and structuring your user interface.

Imagine you have a VStack with various pieces of information. You want to visually separate two specific
views within this stack. To achieve this, you can simply add a Divider. This will create a thin line between
the two views, providing a clear visual distinction. Depending on whether you place the divider in a
VStack or an HStack, it will appear as a horizontal or vertical line respectively. SwiftUI is smart enough to
adapt the appearance of the divider based on its container stack.

struct DividerExampleView: View {
 var body: some View {
 VStack {
 Text("Hello, World!")

 Divider()
 Text("some details for this view")

 HStack {
 Text("First")
 Divider()
 Text("Second")
 }
 // .fixedSize()
 }
 }
}

Dividers, being a “greedy” view, strive to occupy as much space as possible. This means they expand to
fill the available space in the layout. For instance, if you want to minimize the height of the divider and
have it only as tall as the two text views, you can use the fixedSize() modifier.

3 0

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/2-2-divider-and-spacer

HStack {
 Text("First")
 Divider()
 Text("Second")
}
.fixedSize(horizontal: false, vertical: true)

By applying the fixedSize() modifier, the divider’s height is constrained to match the height of the views it
separates, resulting in a more compact appearance.

Moving on to Spacer, they are incredibly useful for controlling the distribution of space within a layout. A
spacer view takes up all the available space in a given axis and pushes the surrounding views
accordingly.

Imagine you have a vertical stack and you want to position it at the top of the screen instead of the
default center alignment. To achieve this, you can use a spacer to expand the stack’s height and push it
to the top.

31

struct SpacerExampleView: View {
 let superhero = SuperHero.example
 var body: some View {
 VStack(alignment: .leading) {
 Text(superhero.name)
 .font(.title)
 Text(superhero.biography)

 Spacer()
 }
 }
}

By adding the Spacer view, it occupies the remaining space at the bottom of the screen and pushes the
stack upwards, aligning it with the top edge.

Spacers can also be used to adjust the spacing between views. For example, if you have three buttons
arranged horizontally, you can add spacers between them to control their positioning.

HStack(spacing: 0) {
 Spacer(minLength: 0)
 Button("First") { }
 Spacer(minLength: 10)
 Button("Second") { }
 Spacer(minLength: 10)
 Button("Third") { }
 Spacer(minLength: 0)
}

In this case, the spacers distribute the available space evenly between the buttons, resulting in a visually
appealing layout. Alternatively, you can use the Color view as a spacer by setting its background color
to match the desired spacing.

Using dividers and spacers in your SwiftUI layouts allows for greater flexibility and adaptability across
different screen sizes.

3 2

2 . 3 G R O U P

In SwiftUI, groups are container views that do not handle the layout of their children. Instead, the layout is
determined by the container view they are placed in, such as an HStack or VStack. However, groups offer
a convenient way to apply the same view modifier to all their children individually.

Where groups shine is their ability to apply view modifiers to multiple child views simultaneously.
Let’s say you want to add a yellow background to all the text views. With a group, you can simply
apply the background modifier to the group:

Group {
 Text("First")
 Text("Second View")
 Text("Third View")
}
.background(Color.yellow)

Unlike when using a VStack or HStack, where the background modifier would be applied to the entire
stack, the group allows you to apply the same modifier to each individual child view. This can be
incredibly convenient, especially when you want to avoid duplicating code.

Another use case for groups is when you have conditional code that requires specific view modifiers. For
example, let’s say you want to display a different view based on whether a user is logged in or not:

struct GroupExampleView: View {
 let isLoggedIn: Bool
 var body: some View {
 VStack {
 Group {
 if isLoggedIn {
 Text("Thank you for signing up")
 } else {
 Text("You need to log in to get access")
 }
 }
 .foregroundStyle(Color.blue)
 }
 }
}

In this case, applying the foregroundColor modifier directly to the conditional code would result in a
crash. However, by wrapping the condition in a group, you can apply the modifier without any issues.

3 3

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/2-3-group

To summarize, groups in SwiftUI do not handle the layout of their children. Instead, they rely on the
container view they are placed in to handle the layout. However, groups provide a convenient way to
apply the same view modifier to all their children individually, making your code more efficient and
avoiding unnecessary repetition.

2 . 4 G R O U P B OX

In SwiftUI, there are various container views available for organizing and styling your interface. One such
container is the GroupBox. Unlike the basic Group view, which doesn’t apply much styling, the GroupBox
allows you to create card-like layouts with ease.

To use a GroupBox, you simply define a title or label and the content you want to display. You can also
apply some padding to enhance the styling. The label is typically displayed in a headline font style, giving
it a prominent appearance.

struct GroupBoxExampleView: View {
 @State private var userAgreed: Bool = false
 let agreementText: String = "Lorem ipsum dolor sit amet, consectetur adipiscing
elit. Aliquam fermentum vestibulum est. Cras rhoncus. Pellentesque habitant mobi
tristique senectus et netus et malesuada fames ac turpis egestas."

 var body: some View {
 GroupBox(label: Label("End-User Agreement",
 systemImage: "building.columns"),
 content: {
 Text(agreementText)
 .font(.footnote)

 Toggle(isOn: $userAgreed) {
 Text("I agree to the above terms")
 }
 })
 .groupBoxStyle(.automatic)
 .padding()
 }
}

3 4

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/2-4-groupbox

In SwiftUI, many container views have specific styling modifiers tailored to their functionality. You can also
create your own custom styling for the GroupBox. By conforming to the GroupBoxStyle protocol, you
can define a unique appearance and interaction for all GroupBox instances within your view hierarchy.

struct OrangeGroupBoxStyle: GroupBoxStyle {
 func makeBody(configuration: Configuration) -> some View {
 VStack(alignment: .leading) {
 configuration.label
 .font(.title)
 configuration.content
 }
 .padding()
 .background(
 RoundedRectangle(cornerRadius: 5.0)
 .fill(Color.orange)
 .shadow(radius: 5)
)
 }
}

In this custom styling example, we can use a VStack to create multiple GroupBox instances with different
titles and contents. By applying our orange group box style to these instances, we can see the visual
transformation.

GroupBox(titleText) {
 Text(agreementText)
}
.groupBoxStyle(OrangeGroupBoxStyle())

While GroupBox may not be one of the most commonly used views, it can be invaluable in creating
visually appealing card-like layouts. Especially in complex apps with numerous subviews, using
GroupBox can help break down information and provide a more intuitive user experience.

3 5

2 . 5 C O N T R O L G R O U P

In SwiftUI, control groups are a powerful tool for adding specific styling to control views, such as buttons,
that you want to group together. Control groups allow you to create a cohesive and visually appealing
layout for your user interface.

To create a control group, you can use the ControlGroup view. Let’s compare putting buttons in a HStack
vs. a ControlGroup:

HStack {
 Button("First") { }
 Button("Second") { }
 Button("Third") { }
}

ControlGroup("Control Group", systemImage: "grear") {
 Button("First") { }
 Button("Second") { }
 Button("Third") { }
}

In this example, we have three buttons grouped together within a control group. By wrapping the buttons
in a control group, they are visually styled as a cohesive unit. You can still interact with each button
individually, but they appear as a single entity.

Control groups also offer various styling variations. For example, you can use system-provided styles like
compactMenu to display the control group as a menu:

ControlGroup("Control Group", systemImage: "grear") {
 ...
}
.controlGroupStyle(.compactMenu)

3 6

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/2-5-controlgroup

Control groups are particularly useful when you have a set of controls that you want to reuse in multiple
places within your app. They automatically adjust their layout based on their placement, making it easy to
maintain a consistent design throughout your user interface.

You can also customize the styling of a control group by creating a custom control group style. Here’s an
example:

struct EqualSizControlGroupStyle: ControlGroupStyle {
 func makeBody(configuration: Configuration) -> some View {
 VStack {
 configuration.content
 .foregroundColor(.white)
 .padding(.vertical, 5)
 .padding(.horizontal, 10)
 .frame(maxWidth: .infinity)
 .background(
 RoundedRectangle(cornerRadius: 5)
 .fill(Color.accentColor)
)
 }
 .fixedSize(horizontal: true, vertical: false)
 }
}

Here is how you can use your custom Group Styling:

ControlGroup("Control Group", systemImage: "grear") {
 Button("First") { }
 Button("Second Second") { }
 Button("Third") { }
}
.controlGroupStyle(EqualSizControlGroupStyle())

This group will place all its children in a VStack and add background rectangles that have all the same
width:

3 7

3 . L AY E R I N G V I E W S
In this section, we will explore the concept of layering views in SwiftUI. Layering views allows us to create
visually appealing and dynamic user interfaces by combining multiple elements together. I will cover
various techniques and modifiers that enable us to control the order and appearance of views within our
layouts.

Throughout this section, I will dive into the following key topics:

• Background Modifier: Learn how to set a background color or image for your views, providing a solid
foundation for your UI elements.

• Overlay Modifier: Discover how to overlay additional views on top of existing ones, allowing for
creative design choices and visual enhancements.

• ZStack container can be used to layer views. I covered this in a previous section

• ZStack vs Background/Overlay: Understand the differences between using a ZStack and applying
background/overlay modifiers, and when to choose one over the other.

• Color View and Gradients: Explore different ways to apply colors to your views, from solid colors to
gradients. These views are often used for backgrounds and overlays.

• Materials: Discover how to apply materials effects to your view background.

3 .1 B A C KG R O U N D M O D I F I E R

The background modifier in SwiftUI allows to add a background to a view. We can easily add a
background to this text by applying the background modifier and specifying a view, such as a color,
image, or shape for the background:

Text("Hello, World!")
 .padding()
 .background {
 Color.cyan
 }

Text("Cats are awesome")
 .padding()
 .background {
 Image("abstract-pool-water")
 .resizable()
 .scaledToFill()
 }
 .clipped()

Text("More")
 .padding(.horizontal)
 .background {
 Capsule().fill(Color.cyan.gradient)
 }

3 8

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/3-1-background-modifier

The great thing about the background modifier is that it fills out the background of the view it is attached
to without increasing the size of the view itself, unlike the ZStack. This makes it perfect for color
backgrounds. If you want to make the view larger, you can use other modifiers like padding or
frame.

In addition to colors, you can also use images as backgrounds. By using the resizable modifier, you can
resize the image to fit the available space in the background. You can also use the scaleToFill modifier to
maintain the aspect ratio of the image while filling the background. To prevent the image from
overflowing, you can use the clipped modifier.

Shapes can also be added as backgrounds. For example, you can add a capsule with a gradient fill using
the background modifier.

SuperHero Example Card

Now, let’s move on to a more interesting example. Imagine we want to create a superhero card view. We
can define a SuperheroView struct conforming to View and add an image of the superhero along with
their name. By applying the background modifier, we can add a color or gradient background to the view.
To achieve a card-like appearance, we can use the cornerRadius modifier or a rounded rectangle shape.

struct SuperHeroView: View {
 let superhero = SuperHero.example2
 var body: some View {
 ResizableImageView(imageName: superhero.imageName)
 .padding([.leading, .top])
 .background(alignment: .topLeading) {
 Text(superhero.name)
 .font(.largeTitle)
 .bold()
 .foregroundStyle(.white)
 .padding()
 }
 .background(
 RoundedRectangle(cornerRadius: 15)
 .fill(Color.cyan.gradient)
)
 .compositingGroup()

3 9

 .shadow(radius: 10)
 .padding()
 }
}

The size of the view depends on the image size by default. You can also add multiple background
modifiers to further enhance the visual appeal of the card.

It’s worth mentioning that when applying the background modifier, the order of modifiers becomes
crucial. For example, if you want to add text on top of the image, you need to ensure that the text is
placed before the background modifier.

Additionally, you can use the alignment parameter to control the alignment of the background within the
view. I used this parameter to align the superhero tex to the top leading edge.

To handle safe areas, the background modifier provides the ignoresSafeAreaEdges parameter. This
allows you to extend the background into the safe areas.

.background(Color.cyan, ignoresSafeAreaEdges: .top)

Background Styles and Shapes

In iOS 15 and macOS 12, Apple introduced new background styles and shapes. You can use these to
create more visually appealing backgrounds. There are more convenient ways to place shapes behind a
view with the background modifier where you can give a ShapeStyle (e.g. a color or gradient) and a
shape:

4 0

Text("Capsule with a gradient background")
 .foregroundStyle(.white)
 .padding()
 .background(Color.cyan.gradient, in: Capsule())

This can be separated out into two modifiers:

VStack {
 Text("background style")
 .padding()
 .background(in: RoundedRectangle(cornerRadius: 5))
}
.padding()
.background(Color.yellow)

You can set the background style independently for example to change the color of a GroupBox:

GroupBox {
 Text("GroupBox")
}
.backgroundStyle(Color.cyan.gradient)

41

3 . 2 OV E R L AY M O D I F I E R

In SwiftUI, we have the overlay modifier, which allows us to place views on top of another view. Similar to
the background modifier that places views behind a certain view, overlay lets us layer views on top.

ResizableImageView(imageName: "cat_1")
 .overlay(alignment: .bottomLeading) {
 Text("Cats are awesome")
 .font(.title).bold()
 .background(Color.white)
 .padding()
 }

Let’s consider another example using a superhero image. Suppose we have a separate
SpiderManProfileImageView that displays a profile image of Spider-Man. We can use the overlay modifier
to add a white border around this view:

struct SpidermanProfileImage: View {
 var body: some View {
 Image("spiderman_profil")
 .resizable()
 .scaledToFill()
 .frame(width: 200, height: 200)
 .clipShape(Circle())
 .shadow(radius: 5)
 .overlay {
 Circle().stroke(Color.white, lineWidth: 5)
 }
 }
}

In this example, we specify the frame size once for both the clipped circle shape and the overlay. They
perfectly align with each other.

4 2

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/3-2-overlay-modifier

Just like with the background modifier, we have options for styling and alignment. Most of the time, you’ll
use the overlay modifier with content or alignment. Additionally, you can overlay a whole shape, such as a
circle:

.overlay(alignment: .bottomLeading) {
 Text("Spider-Man")
}

.overlay(Color.white.opacity(0.5), in: Circle())

.overlay(Color.yellow, ignoresSafeAreaEdges: .top)

4 3

3 . 3 Z S TA C K V S B A C KG R O U N D /OV E R L AY

In SwiftUI, there are different techniques available to achieve layering of views: background, overlay, and
stack. Each of these techniques has its own purpose and considerations. Let’s explore the differences
between them and when to use each approach. To illustrate these concepts, let’s use an example from a
previous lesson.

Text("Cats are awesome")
 .padding()
 .background {
 Image("abstract-pool-water")
 .resizable()
 .scaledToFill()
 }
 .clipped()

The main view is the text view saying “Cats are awesome”. In its background, we have an image view
that show a water pool. The size of the view is defined by the text itself and the padding.

The background, on the other hand, doesn’t influence the size of the view but uses the size of the
view it is attached to and passes it down to its child views. As a result, the image only receives the same
size as the text.

Now, let’s explore how the layout changes when we overlay the text and image using a ZStack. We’ll
need to adjust the image to fit and position the text on top of it.

ZStack {
 Image("abstract-pool-water")
 .resizable()
 .scaledToFit()
 Text("Cats are awesome")
 .padding()
}

The ZStack considers the size of all its child views. In this
case, the image is scaled to fit, making it as large as possible
within the horizontal direction. The ZStack adapts its size to
accommodate the largest child view, which, in this case,
is the image view.

4 4

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/3-3-zstack-vs-background-overlay

When choosing between background, overlay, and ZStack, the decision depends on how you want to
control the size of your views. Lets add a color gradient to the above ZStack:

ZStack {
 Image("abstract-pool-water")
 .resizable()
 .scaledToFit()

 LinearGradient(colors: [Color(white: 0.9, opacity: 0.5),
 Color(white: 0, opacity: 0.7)],
 startPoint: .top,
 endPoint: .bottom)

 Text("Cats are awesome")
 .font(.largeTitle)
 .padding(.leading)
}
.padding()

However, you may notice that the linear gradient takes up a lot of space and tries to be as big as
possible. Consequently, the ZStack adjusts its size to accommodate the largest child view, which, in this
case, is the linear gradient.

To restrict the size of the gradient to match the image, using an overlay modifier is a better solution. By
moving the gradient inside the overlay, its size no longer influences the layout, and the image and
gradient can have the same size.

ZStack {
 Image("abstract-pool-water")
 .resizable()
 .scaledToFit()
 .overlay {
 LinearGradient(colors: [Color(white: 0.9, opacity: 0.5),
 Color(white: 0, opacity: 0.7)],
 startPoint: .top,
 endPoint: .bottom)
 }

 Text("Cats are awesome")
 .font(.largeTitle)
 .padding(.leading)
}
.padding()

4 5

Another solution is to use the fixedSize modifier to the ZStack and restrict the size in the vertical
direction. This way the gradient would not expand more than the image size:

ZStack {
 Image(…)
 LinearGradient(…)
 Text(…)
}
.fixedSize(horizontal: false, vertical: true)

In some cases, using an overlay modifier instead of a ZStack makes more sense, especially when you
want to ensure that the layout is determined by a specific view’s size. The background and overlay
modifiers allow you to align or resize views relative to other views without affecting the overall layout.

To summarize, when layering views in SwiftUI, consider whether you want views to be properly sized and
take up the space they need or if they are secondary and should align or resize with other views. Views
that need to be properly sized can be placed in the background or overlay, while views that should align
or resize with other views can be placed in a ZStack.

3 . 4 C O L O R V I E W

Colors play a crucial role in creating visually appealing and dynamic user interfaces, and SwiftUI makes it
incredibly easy to work with them. Let’s start by understanding a fundamental concept: colors are views
themselves. This means that we can treat colors just like any other view and use them within our view
hierarchies. For example, we can add a blue color to a VStack as a view, and it will expand to occupy as
much space as possible. We can also use other colors like cyan and indigo in a similar manner.

To restrict the expansion of colors, we can apply a frame modifier to set a specific height or width. For
instance, we can limit the height of our color views to 100 by adding a frame modifier with a height of
100.

Color.cyan
 .frame(height: 100)

It’s worth noting that colors conform to the ShapeStyle protocol, allowing us to use them as backgrounds
with the background modifier. However, if we use a color gradient like

Color.cyan.gradient

 it becomes an AnyGradient and is not considered a view. If you want to use a gradient as a view, use it
to fill a shape like:

Rectangle().fill(Color.cyan.gradient)

4 6

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/3-4-color-view

Another use case for colors is filling shapes with a filled shape style. For example, we can use a gradient
as a shape style within a background to create visually appealing effects.

In addition to using predefined colors, SwiftUI also provides various options for creating custom colors.
We can generate colors using hue, saturation, brightness, red, green, and blue values, or even create
semi-transparent colors with a specific opacity. These custom colors offer great flexibility in designing our
interfaces.

Color(hue: 0.7, saturation: 1, brightness: 1) // bright blue
Color(hue: 1, saturation: 1, brightness: 0.9, opacity: 0.5) // opace pink
Color(red: 1, green: 0, blue: 0) // red
Color(white: 0, opacity: 0.5) // opace gray

Example: Image Selection Screen

To demonstrate the usage of colors, let’s consider an example. Imagine we have a board displaying
multiple images, and we want to highlight the selected images by adding a semi-transparent overlay.

4 7

We can achieve this by creating a reusable subview, which takes an image name and a boolean value
indicating whether it is selected or not. By leveraging the overlay modifier, we can apply the semi-
transparent color to the selected images.

struct ImageSelectionView: View {
 let imageName: String
 let isSelected: Bool
 var body: some View {
 ResizableImageView(imageName: imageName)
 .overlay(alignment: .bottomTrailing) {
 if isSelected {
 ZStack(alignment: .bottomTrailing) {
 Color(white: 1, opacity: 0.5)

 Image(systemName: "checkmark.circle.fill")
 .foregroundColor(.accentColor)
 .padding(1)
 .background(Color.white, in: Circle())
 .padding()
 }
 }
 }
 }
}

To further enhance the selected images, we can add a checkmark icon to indicate their selection status.
By using the overlay modifier with a bottomTrailing alignment, we can position the checkmark icon
precisely where we want it. Additionally, we can add a circle shape behind the image to create a visual
distinction.

HStack(spacing: 0) {
 ImageSelectionView(imageName: "dog_1",
 isSelected: false)
 ImageSelectionView(imageName: "cat_1",
 isSelected: true)
 ImageSelectionView(imageName: "horse_1",
 isSelected: false)
}

By combining overlays, backgrounds, and alignments, we can create visually appealing and interactive
user interfaces. Experimenting with different variations of these techniques will allow you to fine-tune the
appearance of your views.

Remember, colors can significantly impact the size and layout of your views. Using overlays and
backgrounds judiciously will help maintain the desired visual balance without compromising the overall
design.

3 . 5 G R A D I E N T S

Gradients like colors are ´greedy´ views and will expand to the available space. SwiftUI provides different
types of gradients such as linear, radial, angular, and elliptical gradients. Here are some examples:

4 8

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/3-5-gradients

HStack(spacing: 1) {
 Rectangle().fill(Color.cyan.gradient)

 LinearGradient(colors: [Color.red, Color.cyan, Color.indigo],
 startPoint: .topLeading,
 endPoint: .bottomTrailing)

 RadialGradient(colors: [Color.red, Color.cyan, Color.indigo],
 center: .center,
 startRadius: 0,
 endRadius: 100)

 AngularGradient(colors: [Color.red, Color.cyan, Color.indigo, Color.red],
 center: .center, angle: .degrees(90))
}
.frame(height: 100)

Example: Making Text more Readable

A common use case is to add text on top of an image. Oftentimes this makes the text very difficult to
read.

ZStack(alignment: .bottomLeading) {
 Image("cat_4")
 .resizable()
 .scaledToFit()

 Text("Cats are awesome")
 .font(.largeTitle)
 .foregroundStyle(.white)
 .padding(.leading)
}

You can use a gradient that is placed behind the text to increase the contrast. In the below example, I
restricted the size of the gradient to a height of 100 points:

ZStack(alignment: .bottomLeading) {
 Image(…)

 LinearGradient(colors: [Color(white: 0, opacity: 0),
 Color(white: 0, opacity: 0.5)],
 startPoint: .top,
 endPoint: .bottom)
 .frame(maxHeight: 100)

 Text(…)
}

4 9

This is especially useful if you have high-contrast images like the below winter image:

3 . 6 M AT E R I A L S

Materials in SwiftU can be used to enhance the legibility, readability, and contrast of your views. Materials
provide an alternative approach to using colored backgrounds, allowing you to achieve a similar effect
with ease.

To better visualize the effect of materials, let’s use a ZStack as our example and add an image with high
contrast or distinct features, such as a water pool. I am placing text above with a ultra-thin material:

ZStack {
 Image("abstract-pool-water")
 .resizable()
 .scaledToFill()

 Text("ultraThinMaterial")
 .padding()
 .background(.ultraThinMaterial)
}

By using materials, you can achieve an iced glass effect where the details of the background shimmer
through. We can then apply different materials to the background to see their impact. There are five
materials available: thin, regular, ultra thin, thick and ultra thick.

5 0

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/3-6-materials

From top to bottom, the materials range from the most transparent to the thickest. You can think of them
as different glass sheets with varying degrees of opacity. The choice of material depends on the desired
contrast and the foreground colors of your text. For example, a thicker material may provide better
contrast for certain text colors.

It’s worth noting that materials also work seamlessly in dark mode. When switching to dark mode, the
materials adapt automatically, providing a darker appearance. This can be particularly useful for
maintaining legibility across different color schemes. You can even use different images or add darker
sheets or gradients to achieve the desired effect in dark mode.

struct MaterialExampleView: View {
 @Environment(\.colorScheme) var colorScheme
 var body: some View {
 ZStack {
 Image("abstract-pool-water")
 .resizable()
 .scaledToFill()

 if colorScheme == .dark {
 Color.black.opacity(0.5)
 }

 HStack {
 Text(…)

 Text(…)
 .foregroundStyle(.secondary)
 }
 }
 }
}

Remember, when presenting information, always ensure that the contrast between the text and the
background is sufficient for users to read comfortably. This consideration is especially important for
individuals with visual impairments. Materials, along with other techniques like gradients and semi-
transparent colors, can greatly enhance the readability of your views.

51

5 2

4 . P O S I T I O N I N G V I E W S

4 .1 H O W T O P O S I T I O N V I E W S

In this section, we will explore various techniques for positioning views within your layout in SwiftUI. By
using different layout containers and view modifiers, we can easily achieve the desired positioning
effects.

Using Primitive Layout Containers

SwiftUI provides us with primitive layout containers like VStack, HStack, and ZStack, which are essential
tools for positioning views. For example, when using a VStack, we can utilize the alignment and spacing
properties to control the positioning of the views within the container.

VStack(alignment: .leading,
 spacing: 10) {
 Text("Title")
 .font(.title)

 Text("show more details")
}

The alignment properties come into play when we have multiple views that need to be aligned or
positioned relative to each other. If you have multiple stacks you can the alignment becomes for
complex:

5 3

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/4-1-how-to-position-views

In this example I am using 2 VStacks that are nested. Therefor I can use 2 alignment properties.
Depending on how I want to align the image to the VStack with the texts to each other or how to align the
2 texts to each other. This is the code that produces the result above on the right:

VStack(alignment: .center, spacing: 30) {
 ResizableImageView(imageName: “beach")

 VStack(alignment: .trailing,
 spacing: 10) {
 Text("Title")
 .font(.title)
 Text("show more details")
 }
}

Moving Views with Spacers

To add spacing between views or align them to specific positions, we can utilize spacers within the layout
containers. In the following example, the spacer takes up the space on the leading side of the text view,
which in turn is pushed to the trailing edge:

HStack {
 Spacer()
 Text("something awesome")
}
.padding(.top, 30)

Spacer expands to fill available space and pushes views to the edges.

If you place the Spacer in a VStack, it will “push” the other child views in the stack in the vertical
direction. In the following example the image is pushed to the top of the screen:

VStack {
 ResizableImageView(imageName: "beach")
 Spacer()
}

5 4

Fixed and Flexible Frames

You can use frames around views. The frame modifier has an argument for alignment, which allows to
align the view inside the frame. The following example gives the same result as the HStack + Spacer
example from above:

Text("something awesome")
 .frame(maxWidth: .infinity,
 alignment: .trailing)

Similarly, I can use a flexible frame to move an image to the top of the screen:

ResizableImageView(imageName: "beach")
 .frame(maxWidth: .infinity,
 alignment: .top)

Fine-Tuning with Padding

Padding is a useful tool for adjusting the position of individual views. By applying padding to a view, we
can change its position within the layout.

struct SuperHeroHeaderView: View {
 let superhero = SuperHero.example
 var body: some View {
 VStack {
 ResizableImageView(imageName: superhero.imageName)
 .padding([.leading, .bottom])
 .background(Color.indigo.gradient)

5 5

 VStack(alignment: .leading) {
 Text(superhero.name)
 .font(.largeTitle)
 .bold()

 Text(superhero.biography)
 }
 .padding()

 Spacer()
 }
 }
}

For example, I added padding around the text to move it away from the edges. Then I also added
padding to the image but only to the leading and bottom edges:

By utilizing the various layout containers, spacers, padding, and advanced positioning techniques like
alignment guides, grids, and view modifiers, we can easily position views within our SwiftUI layouts.
These tools provide us with the flexibility and control needed to create visually appealing and well-
structured user interfaces.

5 6

4 . 2 A L I G N M E N T G U I D E S

In this section, we will explore alignment guides in SwiftUI, which allow you to fine-tune the alignment of
views or override the default alignment system.

HStack(alignment: .lastTextBaseline) {
 Text("Delicious")
 Image("avocado_large")
 Text("Avocado Toast")
 .font(.largeTitle)
}

I used a lastTextBaseline alignment but I want to deviate from it. To override the default alignment system,
we need to use the alignment guide modifier. First, we specify which alignment guide we want to modify,
which in this case is the last text baseline. Then, we define the dimension of the alignment guide:

HStack(alignment: .lastTextBaseline) {
 Text("Delicious")

 Image("avocado_large")
 .alignmentGuide(.lastTextBaseline, computeValue: { dimension in
 dimension.height * 0.8
 })

 Text("Avocado Toast")
 .font(.largeTitle)
}

By using this alignment guide, the last text baseline of “Delicious” and “Avocado Toast” will align with
the specified height, which is 80% through the avocado image.

If we prefer to use points instead of percentages, we can specify a value such as 20 points to move the
image up or down.

Image("avocado_large")
 .alignmentGuide(.lastTextBaseline, computeValue: { dimension in
 dimension.height - 20
})

57

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/4-2-alignment-guides

Additionally, we can use different alignment guides like center or top, depending on our layout
requirements. Modifying the above example, I am aligning the 2 Text views text base line to the images
top edge:

Image("avocado_large")
 .alignmentGuide(.lastTextBaseline, computeValue: { dimension in
 dimension[VerticalAlignment.top]
 })

VStack with Alignment Guides

Now, let’s explore alignment guides within a VStack. We’ll create another VStack with a leading alignment
and add two text views:

VStack(alignment: .leading) {
 Text("Moved")
 .alignmentGuide(.leading, computeValue: { dimension in
 dimension.width * 0.75
 })

 Text("Delicious")

 Image("avocado_large")
 .alignmentGuide(.leading, computeValue: { dimension in
 dimension[HorizontalAlignment.center]
 })
}

In this VStack, we can observe how the alignment guides work with the leading alignment. By using the
alignment guide, we can align the views based on a specific dimension, such as width times 0.75.

You can modify individual views within the stack using alignment guide modifiers. For example, you can
apply the alignment guide to the image and align it to the leading edge, or you can leave the text view as
the default alignment. The alignment guides allow for precise control over the positioning of views within
a stack.

5 8

ZStack with Alignment Guides

Lastly, we’ll explore alignment guides within a ZStack. In this example, we’ll add a resizable image of a
spider as the background. We’ll also include a profile image of a superhero in the foreground. You can
see the results for the default bottomLeading alignment on the left and for the custom on the right:

By using alignment guides, we can align the center of the profile image to the bottom edge of the spider
image. To achieve this alignment, we need to override the bottom alignment guide and set it to
dimensions.height multiplied by 0.5.

ZStack(alignment: .bottomLeading) {
 ResizableImageView(imageName: "spider")
 SpidermanProfileImage()
 .alignmentGuide(.bottom, computeValue: { dimension in
 dimension.height * 0.5
 })
 .padding(.leading, 10)
}

Alignment guides are incredibly useful when fine-tuning the alignment of views within the same stack. In
the next section, we will explore how to align views that are in different stacks and how to create custom
alignment guides.

5 9

4 . 3 C U S T O M A L I G N M E N T G U I D E S

In this section, we will explore how to align views to each other that are contained in different containers
using custom alignment guides. By creating our own alignment guides, we can achieve precise
alignment across multiple stacks. Let’s dive into some examples to better understand this concept.

Example 1: Aligning Horizontal Stripes

To demonstrate custom alignment guides, let’s start with a basic example of horizontal stripes. We will
create a VStack with three colors: yellow, orange, and red. Then, we will use an HStack to display these
stripes. Initially, the stripes will fill up the entire space, but we want to align them to the first third of the
views inside the HStack.

struct HorizontalStripesView: View {
 var body: some View {
 VStack(spacing: 1) {
 Color.yellow
 Color.orange
 Color.red
 }
 }
}

struct CustomAlignmentGuideExampleView: View {
 var body: some View {
 HStack(spacing: 1) {
 HorizontalStripesView()
 .frame(height: 100)

 HorizontalStripesView()
 .frame(height: 50)

 HorizontalStripesView()
 .frame(height: 130)
 }
 }
}

To achieve this, we need to write our own custom alignment guide. We declare a private struct called
FirstThird conforming to AlignmentID. This alignment guide will align the views to the bottom of the yellow
color. We then extend the existing VerticalAlignment with our custom alignment guide.

6 0

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/4-3-custom-alignment-guides

struct FirstThirdAlignment: AlignmentID {
 static func defaultValue(in context: ViewDimensions) -> CGFloat {
 context.height / 3
 }
}

extension VerticalAlignment {
 static let firstThird = VerticalAlignment(FirstThirdAlignment.self)
}

Finally, we can use our custom alignment guide in the HStack by setting the alignment to FirstThird. This
will align the stripes to the first third, creating a visually pleasing layout.

HStack(alignment: .firstThird, spacing: 1) {
 HorizontalStripesView()
 .frame(height: 100)

 HorizontalStripesView()
 .frame(height: 50)

 HorizontalStripesView()
 .frame(height: 130)
}

Example 2: Aligning Image and Title

In this example, we have an HStack with two VStacks inside. Each VStack contains an image and a text.

HStack {
 VStack {
 ResizableImageView(imageName: "cat_1")
 Text("Minime")
 .font(.title)
 }

 VStack {
 ResizableImageView(imageName: "mountain")
 Text("Mountains")
 .font(.title)
 Text("Increadible view during sunset")
 }
}

61

By default, the VStacks are aligned in the center, but we want to align them so that the bottom edge of
the images is aligned to each other.

To achieve this, we need to create our own custom alignment guide again. We declare a private struct
called ImageTitleAlignment conforming to AlignmentID. This alignment guide will align the views based on
the dimensions of the images. We extend the existing VerticalAlignment with our custom alignment guide.

struct ImageTitleAlignment: AlignmentID {
 static func defaultValue(in context: ViewDimensions) -> CGFloat {
 context[.bottom]
 }
}

extension VerticalAlignment {
 static let imageTitleAlignment = VerticalAlignment(ImageTitleAlignment.self)
}

Using our custom alignment guide, we can align the images to each other by attaching the alignment
guide to the appropriate views. This allows us to achieve precise alignment between the image and the
title, creating a visually appealing layout.

HStack(alignment: .imageTitleAlignment) {
 VStack {
 ResizableImageView(imageName: "cat_1")
 .alignmentGuide(.imageTitleAlignment, computeValue: { dimension in
 dimension[.bottom]
 })
 Text("Minime")
 .font(.title)
 }

 VStack {
 ResizableImageView(imageName: "mountain")
 .alignmentGuide(.imageTitleAlignment, computeValue: { dimension in
 dimension[.bottom]
 })
 Text("Mountains")
 .font(.title)
 Text("Increadible view during sunset")
 }
}

6 2

Example 3: Creating a User Table

In this example, we want to create a user table with rows containing the user’s name, street, zip code,
and more details. Each row is represented by an HStack, and we want to align the title property of each
row to the trailing edge of the table.

struct UserInformationView: View {
 var body: some View {
 VStack(alignment: .center, spacing: 20) {
 Image(systemName: "person.fill.questionmark")
 .font(.system(size: 40))
 .foregroundStyle(.accent)

 PersonRowView(title: "Full Name:",
 value: "John Doe")
 PersonRowView(title: "Street:",
 value: "One Apple Park Way")
 PersonRowView(title: "Zip:",
 value: "95014 Cupertino”)
 PersonRowView(title: "Details:", value: "")
 }
 }
}

To achieve this, we once again create a custom alignment guide. We declare a private struct called
CustomTrailing conforming to AlignmentID. This alignment guide aligns the views based on the trailing
edge. We extend the existing HorizontalAlignment with our custom alignment guide.

struct CustomTrailing: AlignmentID {
 static func defaultValue(in context: ViewDimensions) -> CGFloat {
 context[.trailing]
 }
}

extension HorizontalAlignment {
 static let customTrailing: HorizontalAlignment =
HorizontalAlignment(CustomTrailing.self)
}

6 3

By applying our custom alignment guide to the appropriate views, we can align the title properties of
each row to the trailing edge of the table. This creates a clean and organized layout, resembling a table.

struct PersonRowView: View {
 let title: String
 let value: String

 var body: some View {
 HStack {
 Text(title)
 .alignmentGuide(.customTrailing, computeValue: { dimension in
 dimension[.trailing]
 })
 Text(value)

 }
 }
}

struct UserInformationView: View {
 var body: some View {
 VStack(alignment: .customTrailing, spacing: 20) {
 Image(…)

 PersonRowView(…)
 PersonRowView(…)
 PersonRowView(…)
 PersonRowView(…)
 }
 }
}

Example 4: Movie Detail View

In our final example, we create a movie detail view with a background image, title, star rating, action, and
more details.

VStack {
 ZStack {
 ResizableImageView(imageName: "spider")

 HStack(spacing: 20) {
 Image("spiderman_profil")
 .resizable()
 .scaledToFill()
 .frame(maxWidth: 150, maxHeight: 200)
 .clipShape(RoundedRectangle(cornerRadius: 5))

 VStack(alignment: .leading, spacing: headerSpacing) {
 Text(title)
 .font(.title).bold()
 .foregroundColor(.white)

 VStack(alignment: .leading) {
 Text("★★★★")
 Text("Action")
 .font(.headline)

6 4

 Text("1h 51m")
 }
 }
 }
 .padding(.horizontal)

 }

 Text(superhero.biography)
 .padding()
}

We want to align the Spider-Man image to the bottom between the title and the star rating, regardless of
the number of lines in the title.

To achieve this, we use a ZStack to overlay the views. We create a custom alignment guide called
MovieAlignment that aligns the views based on the vertical center.

extension Alignment {
 static let movieAlignment = Alignment(horizontal: .leading,
 vertical: .imageTitleAlignement)
}

By attaching the alignment guide to the appropriate views, we can align the Spider-Man image precisely
between the title and the star rating.

VStack {
 ZStack(alignment: .movieAlignment) {
 ResizableImageView(imageName: "spider")

 HStack(spacing: 20) {
 Image(…)
 .alignmentGuide(.imageTitleAlignment, computeValue: { dimension in

 dimension[VerticalAlignment.bottom] + headerSpacing / 2
 })

 VStack(alignment: .leading, spacing: headerSpacing) {
 …
 }
 }
 .padding(.horizontal)

6 5

 }

 Text(..)
}

By utilizing custom alignment guides, we can achieve balanced and visually pleasing layouts. These
alignment guides provide a similar experience to Auto Layout in UIKit, making it easier to align views
within different stacks.

4 . 4 G R I D V I E W

Grids are another powerful tool for positioning views in a table-like layout. They simplify the alignment of
multiple columns and ensure a consistent and organized presentation of data. To illustrate the capabilities
of Grid view, let’s take a look at two real-world examples. The user information table from the previous
section can also be easily done with Grid.

Weather Forecast View

To create a weather forecast view, we’ll use a GridView with horizontal and vertical styles. This allows us
to specify alignment, horizontal spacing, and vertical spacing options. We’ll align the weekdays to the
leading edge and the numbers to the trailing edge.

struct WeatherForcastView: View {
 let forcastData = WeatherData.example()
 var body: some View {
 GroupBox("10-Day Forcast") {
 Grid(alignment: .trailing,
 horizontalSpacing: 10,
 verticalSpacing: 5) {

 ForEach(forcastData) { data in
 GridRow(alignment: .center) {
 Text(data.weekday.name())
 .gridColumnAlignment(.leading)

 Image(systemName: data.iconName)
 .renderingMode(.original)
 .imageScale(.large)
 .gridColumnAlignment(.center)

 Text(String(data.lowTemperature) + "°")
 ProgressView(value: data.progress)
 Text(String(data.hightTemperature) + "°")
 }

6 6

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/4-4-grid-view

 }
 }
 }
 }
}

In this code snippet, we iterate over the weatherData array and create a GridRow for each data point. I
am aligning the weekdays to the leading edge using

.gridColumnAlignment(.leading)

the image icon is aligned in the center:

.gridColumnAlignment(.center)

and use the default alignment for the other views. The gridColumnAlignment modifier allows us to
specify a different alignment for a specific column.

Expense Grid View

For the expense grid view, we’ll again use a GridView with ForEach to iterate over the expense data.
We’ll create grid rows to display the expense details, including fixed expenses, variable expenses, and
the total for each month.

In this example, we use the expenseData array to populate the GridView. We create a GridRow for each
data point and display the necessary expense details.

6 7

struct ExpenseGridView: View {
 let expenseData = ExpenseData.examples()
 let totalExpense: Double = 13500

 var body: some View {
 Grid(alignment: .trailing) {
 GridRow {
 Color.clear
 .gridCellUnsizedAxes([.vertical, .horizontal])

 Text("Fixed")
 Text("Variable")
 Text("All")
 .bold()
 }

 Divider()
 .gridCellUnsizedAxes([.vertical, .horizontal])

 ForEach(expenseData) { data in
 GridRow {
 Text(month(for: data.month))
 Text(String(format: "%.2f", data.fixedExpenses))
 Text(String(format: "%.2f", data.variableExpenses))
 Text(String(format: "%.2f", data.totalExpenses))
 }
 }

 Divider()
 .gridCellUnsizedAxes([.vertical, .horizontal])

 GridRow {
 Text("Total")
 .bold()

 Color.clear
 .gridCellUnsizedAxes([.vertical, .horizontal])
 .gridCellColumns(2)

 Text("$" + String(format: "%.2f", totalExpense))
 .bold()
 }
 }
 }

 let formatter = DateFormatter()

 func month(for number: Int) -> String {
 formatter.shortMonthSymbols[number - 1]
 }
}

For the header, I need to add an empty placeholder for the first cell. This can be done with

 GridRow {
 Color.clear
 .gridCellUnsizedAxes([.vertical, .horizontal])

 Text(…)
 }

6 8

For the summary row at the bottom, I need again an empty placeholder. By using the
gridCellColumnsCount modifier, we can span views across multiple columns, allowing for more flexibility
in the layout.

 Color.clear
 .gridCellUnsizedAxes([.vertical, .horizontal])
 .gridCellColumns(2)

You have the possibility to align all cells in the same column with

 .gridColumnAlignment(.trailing)

or to only align individual views with

 .gridCellAnchor(.leading)

6 9

4 . 5 P O S I T I O N A N D O F F S E T M O D I F I E R S

In certain cases, we may need to use view modifiers like position and offset to achieve custom
positioning effects. These modifiers are particularly useful for drawings or creating unique visual effects.

Offset Modifier

The offset modifier allows you to shift a view from its original position. You can specify the offset using
either CGSize or x and y values.

To better understand the concept, let’s start with a simple exercise. We’ll create a crosshair view to
visualize the center of our layout. We can achieve this by using a ZStack and overlaying two lines, one
horizontal and one vertical. By default, the alignment of the crosshair view will be centered.

struct CrossHairView: View {
 var body: some View {
 ZStack {
 Color.gray.frame(width: 1)
 Color.gray.frame(height: 1)
 }.border(Color.gray)
 }
}

Once we have the crosshair view set up, we can use it to visualize the original position of other views. For
example, we can create a circle or use a text view with a small font size. By applying the offset modifier,
we can shift the view in different directions, such as moving it down or to the right.

ZStack {
 CrossHairView()

 Circle()
 .fill(Color.cyan)
 .frame(width: 50, height: 50)
 .offset(x: 50, y: -150)

}
.frame(height: 400)

It’s important to note that when using the offset modifier, we are only shifting the visible part of the view,
not the entire layout. The layout system still reserves the necessary space for each view, which you can
see from the blue border when the selectable preview is used.

Position Modifier

The position modifier is another way to adjust the position of a view. However, instead of using an offset,
we specify the exact position in the parent’s coordinate system. This can be a bit confusing at first, but it
becomes clearer with an example.

7 0

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/4-5-position-and-offset-modifiers

Let’s say we have a ZStack as our parent view, and we want to position a subview within it. By using the
position modifier, we can specify the exact coordinates in the parent’s coordinate system. For instance,
setting x: 100 and y: 200 will move the center of the view 100 points to the right and 2000 points down
from the top-left corner of the parent view.

ZStack {
 CrossHairView()

 Circle()
 .fill(Color.cyan)
 .frame(width: 50, height: 50)
 .position(x: 100, y: 200)

}
.frame(height: 400)

The position modifier becomes particularly useful when we need precise control over the position of a
view, such as when creating drawings or animations. However, it’s important to note that using the
position modifier can affect the layout of other views, as it directly influences the positioning within
the parent view.

Example: Animated Background Graphics

In this subsection, I’ll walk through an example that demonstrates the use of offset and blur modifiers to
create a visually appealing animated background. This example will showcase how these modifiers can
be combined with animations to add a touch of elegance to your app.

struct FancyBackgroundView: View {
 @State private var animate: Bool = false
 var body: some View {
 ZStack {
 Color.backgroundColor2
 Circle()
 .fill(Color.accentColor)
 .frame(width: 200)
 .offset(x: animate ? 100 : -100,
 y: animate ? -50 : 200)
 .blur(radius: animate ? 100 : 120)

 Circle()
 .fill(Color.cyan)
 .blur(radius: animate ? 100 : 120)
 .frame(width: 150)
 .offset(x: animate ? -200 : 100,
 y: animate ? 100 : -200)
 }
 .edgesIgnoringSafeArea(.all)
 .onAppear {
 withAnimation(Animation.easeInOut(duration: 5).repeatForever()) {
 animate = true
 }
 }
 }
}

7 1

I’ll start by using a ZStack to layer our background elements. You can add a solid color as the base
background using the background modifier or the Color view directly.

Next, we can incorporate various shapes, such as circles, to add visual interest to the background. By
specifying the fill color, frame size, and position offset, we can create multiple circles in different
corners of the screen.

To bring the animation to life, we’ll introduce a @State property called animate to toggle the animation on
and off. We’ll use the withAnimation block to specify the animation type, duration, and any additional
animation options. By animating the position offset and blur radius values, we can create a mesmerizing
effect as the circles move and blur in and out.

Remember, it’s important to strike a balance with animations. While they can add a delightful touch to
your app, overusing them can lead to a cluttered and distracting user experience. It’s best to test and
adjust the animation duration and effects to achieve the desired visual impact without overwhelming the
user.

7 2

5 . S I Z I N G V I E W S

5 .1 H O W T H E L AYO U T S YS T E M S I Z E S A N D P O S I T I O N S
V I E W S

In this section, we will explore how to size views in SwiftUI. Most of the time, the layout system handles
the sizing of views internally. However, there are situations where you may want to customize the sizing
behavior. To understand this, let’s first delve into how the layout system works.

Different Types of Views

In SwiftUI, views can be categorized into three main types based on their sizing behavior:

• Fixed Size Views: These views have a strict, predetermined size. For example, if you place an image
from your assets in a view, it will insist on its original size, even if it overflows the screen. These fixed-
size views maintain their predetermined dimensions.

• Flexible Views: These views adjust their size based on available space. There are two subcategories
within flexible views:		

- Conservative Views: These views take up only as much space as they need to fit their content.
For example, a Text view will adjust its size based on the length of the text. If it doesn’t fit on one
line, it will wrap to multiple lines. If space is limited, it may truncate or compress itself to fit.

- Greedy Views: These views strive to occupy as much space as possible. For example, a spacer in
a horizontal stack will expand horizontally until it reaches the screen’s limit. Examples of greedy
views include Spacer, Color, Shape, ScrollView, List, and TextEditor.

7 3

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/5-1-how-the-layout-system-sizes-and-positions-views
https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/5-1-how-the-layout-system-sizes-and-positions-views

Modifying View-Sizing Behavior

You can modify the sizing behavior of views using view modifiers. They can make views use a fixed size
or make them use a more flexible sizing. Here are a few commonly used modifiers:

• Resizable: This modifier allows you to stretch or shrink an image to fit the available space. Thus,
making the image a greedy view.

• ScaleToFit: When applied to an image, this modifier scales the image proportionally to fit within the
available space.

• Fixed Frame: This modifier acts as a container specifying a fixed size for a view.

• Flexible Frame: You can set min, and maximum frame sizes which makes the frame container a greedy
view that expands to fill the available space.

• FixedSize: This modifier ensures that a view maintains its intrinsic size. SwiftUI will respect the size and
will use it for the layout. This can cause views to expand beyond the visible areas of the screen.

By applying these modifiers, you can adjust the sizing behavior of views to suit your specific needs.

Understanding the Layout Process

Container views, such as VStack, have the responsibility of laying out their subviews or children and
distributing available space. This becomes particularly interesting when you have limited screen space
and need to prioritize content.

In SwiftUI, the layout system is responsible for sizing and positioning views on the screen. It follows a
three-step process to determine the size and position of each view within its parent container. Let’s dive
into each step to get a better understanding of how it works.

Step 1: Propose Size

The first step in the layout process is when the parent view proposes a size to its child views. The parent
view examines the available space it has and suggests a size to its children. This proposed size is based
on the parent view’s own size and any constraints or modifiers applied to it.

74

Step 2: Subview Decides its Own Size

Once the child view receives the proposed size from its parent, it decides how much space it wants to
occupy. This decision is influenced by the type of view and any modifiers applied to it. There are three
main categories of views in terms of sizing behavior:

Fixed Size Views: These views have a specific size that they insist on occupying. They will not
change for different proposed sizes.

Flexible Views: Flexible views will adjust their size based on the proposed size.

Conservative Views: These views take up only as much space as they need to fit their
content. It will return the size to the container that it needs and not more

Greedy Views: Greedy views try to occupy as much space as possible. They will return to
their parent all the space that they have been offered.

After the child view determines its desired size, it communicates this information back to the parent view.
Thus the parent view adjusts its own size based on the sizes of its children and communicates it to its
own parent.

Step 3: Positioning

The parent view then uses this size to position the child view within its own bounds. By default, SwiftUI
centers the child view within the available space. However, you can modify the positioning behavior using
view modifiers like alignment and padding.

It’s important to note that the layout process follows a top-to-bottom approach, starting from the root
view and cascading down to its children. Each parent view sizes and positions its children, who in turn do
the same for their own children, if any.

Laying out Views that Compete for Space

When working with container views like HStack, the layout system determines how to size and distribute
space among the child views. The order in which views are sized and positioned is crucial. SwiftUI
prioritizes the least flexible views first, allowing them to claim the space they need. Then, the remaining
space is distributed among the more flexible views. Let’s consider a scenario where multiple color views
compete for space within an HStack:

HStack(spacing: 0) {
 Color.red
 Color.orange
 Color.yellow
 Color.green
 Color.blue
}
.frame(width: 100, height: 100)

7 5

All 5 color views are considered “greedy” because they want to take up as much space as possible.
When the layout system encounters this scenario, it follows a set of rules to distribute the available space
among the competing views. In the case of the HStack, it distributes the total width equally between its
child views. It first substracts the spacing between the child views and the remaining width is divided by
the number of views:

Size of individual color view = (width - (spacing * (number of children - 1))) / number of children

In the above example, we have:

Size of individual color view = (100 - (0 * 4)) / 5

As a result, each view within the HStack will have the full height available of 100 points and 1/3 of the
width, allowing them to be equally spaced within the available space. This behavior ensures that all the
views have a fair share of the available width.

Lets look at an example where an HStack has to distribute the space between a fixed-size view and
flexible views:

HStack {
 Text("Eat more")
 Image("avocado_large")
 Text("Avocado Toast")
}
.font(.title)
.frame(width: 200, height: 60)

The layout will first offer the space to the least flexible-sized view
which is the image. Then it will distribute the remaining space between
the other two texts, which will be proposed half each. The “Avocado
Text” is longer and will be truncated first.

You can also use the layoutPriority modifier to prioritize one view over another when space is limited.
In the following example the “Avocado Toast” is offered the space over the other text:

HStack {
 Text("Eat more")
 Image("avocado_large")
 Text("Avocado Toast”)
 .layoutPriority(1)
}
.font(.title)
.frame(width: 300, height: 60)

In the upcoming sections, we will explore various view modifiers like layoutPriorty that allow you to
customize the sizing behavior of views. These modifiers, such as resizable, and frame, provide you with
the flexibility to fine-tune the sizing and positioning of your views.

76

Layout Neutral Views

Some view modifiers, such as background, overlay, and border, are layout-neutral. These modifiers do
not influence the layout behavior but instead, pass the proposed size to their children. They are useful for
visualizing the occupied area of views.

Background has a secondary child view which is in this example the green color view. The background
takes the view its primary child (the frame and text) wants and passes it to its secondary child. The green
color gets the size proposed and because it is a greedy view, it takes it completely up. Therefore the
green color in the background is the same exact size as the background`s wrapped view.

Understanding the layout system and the different types of views, as well as how to modify their sizing
behavior, is crucial for creating well-designed SwiftUI layouts. In the upcoming sections, we will explore
these concepts in more detail and cover additional topics such as adaptive layout and custom layouts.

7 7

5 . 2 F I X E D A N D F L E X I B L E F R A M E S

In this section, we will explore the various ways to specify the size of a view using the frame modifier in
SwiftUI. The frame modifier allows us to control the dimensions and alignment of a view within its
container.

Flexible Frames

One example of using the frame modifier is to create flexible frames. By setting the maximum width or
height to infinity, we can allow the view to stretch and adapt to the available space. For example, to move
a view to the trailing edge, we can use a flexible frame with a maximum width of infinity:

Text("Hello, World!")
 .frame(maxWidth: .infinity)
 .background(Color.yellow)

By default, the content within the frame is centered. We can change the alignment by using the frame
modifier’s alignment parameter. For example, to align the text to the trailing edge, we can use:

Text("Hello, World!")
 .frame(maxWidth: .infinity, alignment: .trailing)
 .background(Color.yellow)

The frame modifier can expand vertically and horizontally. The alignment options are the same as for
ZStack:

.frame(maxWidth: .infinity,
 maxHeight: .infinitiy,
 alignment: .bottomTrailing)

7 8

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/5-2-fixed-and-flexible-frames

Fixed Frames

In addition to flexible frames, we can also set specific dimensions for a view using the frame modifier.
This is useful when we want to control the size of images or drawings. For example, to create a custom
divider, we can use the frame modifier with fixed width and height values:

Divider()

Color.gray
 .frame(height: 1)

Clipping and Masking

The frame modifier can also be used in combination with clipping and masking to achieve specific sizing
effects. For example, we can use a mask of a circle view to create a circular image:

Image("spiderman_profil")
 .resizable()
 .frame(width: 100, height: 100)
 .mask(Circle())

7 9

Ideal Frames

The frame modifier provides additional parameters such as, ideal width, and ideal height. These
parameters allow us to define the ideal size of a view which is used as the intrinsic size of the view. For
example, we can create a view with an ideal width of 100 and place it inside a Scrollview:

ScrollView {
 Text("ideal frame height 100")
 .frame(maxWidth: .infinity,
 maxHeight: .infinity)
 .background(Color.mint)

 Text("ideal frame height 100")
 .frame(minWidth: 0,
 idealWidth: 100,
 maxWidth: .infinity,
 minHeight: 0,
 idealHeight: 100,
 maxHeight: .infinity)
 .background(Color.yellow)

 Text("fixed frame height")
 .frame(height: 100)
 .frame(maxWidth: .infinity)
 .background(Color.yellow)
}

The ideal width/ heigh will be used if a fixedSize is applied. ScrollView will attach a fixed size to its
children in the scroll direction. The frame's ideal height will be used. Similarly, you can force a height of
100 points with a fixed frame value.

Minimum Width and Height

In addition to maximum height and width, the frame modifier in SwiftUI also allows us to set minimum
height and width values for a view. These parameters define the minimum size that a view should occupy
within its container. For example, you might want to set a minimum size of a view on macOS, where the
user can drag the window to make it smaller and larger. The minimum values make sure that the window
will not shrink smaller than the values you have given:

Text("min frame height and width 100")
 .frame(minWidth: 200,
 minHeight: 200)
 .background(Color.mint)

8 0

Alignment In Multiple Frames

We can apply multiple frame modifiers to a view to achieve complex layouts. When using multiple frames,
it’s important to understand how the alignment is affected. The alignment of a view is determined by its
immediate container. For example, if we have a VStack with multiple child views, the alignment of the
VStack will affect the alignment of its child views.

However, if we apply a frame modifier to a child view, that will take up the full width in the stack, the
alignment of the text view will be handled solely by the frame.

VStack(alignment: .leading) {
 Text("First Text")

 Text("Second Text")
 .frame(maxWidth: .infinity,
 alignment: .trailing)
 .background(Color.yellow)
}

Each text view is aligned inside its immediate frame container. When one frame is nested inside another
frame, the parent frame is responsible to align the child frame respectively:

VStack {
 Text("third text")
 .frame(maxWidth: 300,
 alignment: .trailing)
 .background(Color.yellow)
 .frame(maxWidth: .infinity,
 alignment: .center)
 .background(Color.orange)

 Text("forth text")
 .frame(maxWidth: 300,
 alignment: .trailing)
 .background(Color.yellow)
 .frame(maxWidth: .infinity,
 alignment: .leading)
 .background(Color.orange)
}

The frame modifier in SwiftUI provides powerful tools for sizing and aligning views within their containers.
Whether we need flexible frames that adapt to available space or fixed frames for precise control, the
frame modifier allows us to achieve our desired layouts.

81

5 . 3 F I X E D S I Z E

In this section, we will explore the concept of sizing views in SwiftUI. One important aspect of sizing
views is the fixed size, which can be thought of as the intrinsic size that a view needs. Let’s dive into
some examples to understand this concept better.

Using the Intrinsic Size of Text Views

When working with views, it’s crucial to consider their necessary size. When you apply the fixed size
modifier you are telling the SwiftUI layout to use the intrinsic size of this view. In the following example, I
enforce the intrinisic size of the “Avocado Toast” view:

HStack {
 Text("Eat more")
 Image("avocado_large")
 Text("Avocado Toast")
 .fixedSize()
}
.font(.title)
.frame(width: 250, height: 60)

This means that the view will always display the full text, without being cut
off. However, keep in mind that when using fixed size, the HStack needs to
distribute the available space between its children. In this case, both the
image and the AvocadoToastTextView have strict sizing, and the remaining
space is allocated to the “Eat more!” text.

For a smaller space of the stack, the image and “Avocado Toast” texts are still using their intrinsic size,
which can be larger than the size of the stack. Thus the views are overflowing the available area.

Example: Equal Size Views

In this example, we want to size two Text views within an HStack. One view contains a short string, while
the other has a longer string. To ensure both views have equal height, we can apply the fixedSize
modifier.

HStack {
 Text("short string")
 .padding()
 .frame(maxHeight: .infinity)
 .background(Color.mint)
 Text("There is not a lot of space to fit everything")
 .padding()
 .frame(maxHeight: .infinity)
 .background(Color.yellow)
}
.fixedSize(horizontal: false, vertical: true)

8 2

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/5-3-fixedsize

By using fixedSize, we restrict the vertical size of the HStack to the intrinsic height of the larger view. The
flexible frame stretches dynamically in the vertical direction. This ensures that both views have the same
height, even if the longer string doesn’t fit entirely.

Similarly, you can do the same in the horizontal direction, which I used in an earlier section for
ControlGroup styling:

VStack {
 Text("short string")
 .padding()
 .frame(maxWidth: .infinity)
 .background(Color.mint)
 Text("Second view that is bigger")
 .padding()
 .frame(maxWidth: .infinity)
 .background(Color.yellow)
}
.fixedSize(horizontal: true, vertical: false)

Example: Undefined Intrinsic Size

Some views, like the Color view, don’t have a clearly defined intrinsic size. In such cases, applying the
fixedSize modifier can have unexpected results. A color view will become very small when you use a
fixed size:

Color.indigo
 .fixedSize()

Similarly, you get really small views for resizable images, shapes, and
spacers.

8 3

Example: Spacer and Control Views

Certain control views, like ColorPicker and DatePicker, also benefit from the fixedSize modifier in specific
scenarios.

ColorPicker("Select a color",
 selection: $selectedColor)

ColorPicker("Select a color",
 selection: $selectedColor)
 .fixedSize()

These views use a spacer in an HStack. Applying the fixedSize modifier will shrink the Spacer and thus th
stack in the horizontal direction. This can be useful in layouts where we want to eliminate unnecessary
spacing. Similarly, control views like ColorPicker and DatePicker can have their spacing adjusted by
applying fixedSize.

5 . 4 L AYO U T P R I O R I T Y

In this section, we will dive deeper into the concept of layout priority. Let’s take a look at an example to
understand how it works.Imagine we have a simple layout with two text views and an image, all placed
within a VStack. To demonstrate layout priority, we can add frames with a width of 300 to this view and
apply borders around everything.

HStack {
 Text("Eat more")
 Image("avocado_large")
 Text("Avocado Toast")
}
.font(.title)
.lineLimit(1)
.frame(width: 300)
.border(Color.blue)

By default, all three views have the same layout priority. This means that the image, being more strict in
its size, will be sized first. The remaining space is then divided equally between the two text views.
However, if one of the text views, let’s say “Eat More,” is smaller in size, it will be able to fit itself while the
“Avocado Toast” text will be truncated.

Now, let’s explore the power of layout priority. By assigning a higher layout priority to the “Avocado
Toast” text, we prioritize its size over the other text views. The image still maintains its strict size, so it will
still be sized first. This type of layout priority is particularly useful when working with texts that adjust to
available space. It allows you to determine which text is more important for the user to read.

HStack {
 Text("Eat more")
 Image("avocado_large")
 Text("Avocado Toast”)
 .layoutPriority(1)
}

8 4

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/5-4-layout-priority

.font(.title)

.lineLimit(1)

.frame(width: 300)

.border(Color.blue)

You can apply multiple layout priorities to different views within a VStack or a Stack. For example, if you
have another text view, you can set the layout priorities to 2, 1, and 0 to define the order of sizing priority.

However, applying layout priority to certain views, such as colors, may yield unexpected results. For
instance, if you have a HStack with five colors, all with the same layout priority, the layout system will
distribute the available space equally among them.colors.

HStack(spacing: 0) {
 Color.red
 Color.orange
 Color.yellow
 Color.green
 Color.blue
}
.frame(width: 100, height: 100)
.mask(Circle())

But by assigning a layout priority of 1 to the blue color, it becomes the highest priority and receives all the
available space, leaving none for the other

HStack(spacing: 0) {
 Color.red
 Color.orange
 Color.yellow
 Color.green
 Color.blue
 .layoutPriority(1)
}
.frame(width: 100, height: 100)
.mask(Circle())

To address this, you can add frames to the views. For example, setting a minimum width of 10 ensures
that the green color receives exactly the minimum space. Adding a maximum width wouldn’t make a
difference in this case. You can also define a frame with minimum, ideal, and maximum widths, such as
10, 20, and 100. This allows the view to take whatever space is offered up to its maximum width.

HStack(spacing: 0) {
 Color.red
 Color.orange
 Color.yellow
 Color.green
 .frame(minWidth: 20)
 Color.blue
 .frame(minWidth: 10,
 idealWidth: 20,
 maxWidth: 50)
 .layoutPriority(1)
}

8 5

.frame(width: 100, height: 100)

.mask(Circle())

In the case of conflicting layout priorities, the view with the highest priority will be sized first and it will be
offered all the space. This behavior may seem a bit unfortunate, as it gives everything to the highest
priority view. But when it comes to texts, it actually makes sense. For example, when using 2 text views
type, the layout system prioritizes giving all the space to the most important text, gradually shrinking the
important text until it is completely truncated.

Applying layout priority to views within a VStack or a Stack is incredibly useful for making your
views adaptable to different screen sizes, dynamic types, and even landscape or portrait modes. It
ensures that your content adjusts to the available space and provides a seamless user experience.

5 . 5 S I Z I N G T E X T V I E W S

In this section, we will dive deeper into sizing text views in SwiftUI. Text views are conservative views that
try to adjust automatically, making them quite flexible in terms of layout. By default, text views aim to fit
themselves within the available space.

Restricting Text Views

In a previous lesson, we discussed using the layoutPriority modifier to specify which views should adapt
their size. Additionally, you can restrict a text view’s size by using frames, such as fixed width or
maximum width. You can also limit the height by setting it to a certain value or using the lineLimit
modifier to display only a single line.

For instance, in the MovieDetailView, the title of the movie is defined with a large and bold font. To ensure
it fits well within the layout, we can add a line limit of two. By experimenting with different line limits and
dynamic types, we can find the optimal display for our text.

8 6

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/5-5-sizing-text-views

VStack {
 ZStack {
 ResizableImageView(imageName: "spider")

 HStack(spacing: 20) {
 Image(…)

 VStack(alignment: .leading, spacing: headerSpacing) {
 Text(title)
 .font(.title).bold()
 .foregroundColor(.white)
 .lineLimit(2)

 VStack(alignment: .leading) {
 Text("★★★★")
 Text(…)
 }
 }
 .padding(.horizontal)

 }

 Text(superhero.biography)
 .padding()
}

Dealing with Multi-Line Text

When working with multi-line text, it’s important to consider the readability and alignment of the content.
SwiftUI provides modifiers to control the alignment and truncation of multi-line text views.

• Alignment: By default, text views are aligned to the leading edge. You can modify this alignment using
the multilineTextAlignment modifier to center or trail the text.

• Readability: Leading alignment is often recommended for multi-line text as it reduces friction for the
reader. When the text jumps to the next line, the reader’s eyes naturally return to the same position.
Apple’s UX designers have wisely set the default alignment to leading, ensuring a better user
experience.

 Text(text)
 .multilineTextAlignment(.trailing)

8 7

Text Truncation Mode

Text will automatically be truncated if it does not fit the available space. Truncated text will be indicated
by three dots. By default, the truncation is at the end of the text. But you can change it with the
truncationMode modifier:

Text(superhero.biography)
 .lineLimit(2)

Text(superhero.biography)
 .lineLimit(2)
 .truncationMode(.middle)

Text(superhero.biography)
 .lineLimit(2)
 .truncationMode(.head)

Allows Tightening

You can also allow tightening, which will compress the space between characters, if it is limited in space:

Text(superhero.biography)
 .lineLimit(2)

Text(superhero.biography)
 .lineLimit(2)
 .allowsTightening(true)

Minimum Scale Factor

You can also allow the text to scale down to fit in the available space. The following minimum scale factor
allows the text to shrink to 75%:

Text(superhero.biography)
 .frame(height: 70)

Text(superhero.biography)
 .frame(height: 70)
 .minimumScaleFactor(0.75)

8 8

5 . 6 S I Z I N G I M A G E S

Working with images in an iOS app is a common task, but sizing them correctly can be a bit tricky. In this
section, we will explore different types of images, how to size them, frame them correctly, and even
handle async images downloaded from the internet.

Image Size and Resolutions

In the assets folder, I have provided a set of images with different resolutions. Typically, we have 1x, 2x,
and 3x images for different screen resolutions.

For example, iPhones usually use 3x images due to their higher pixel density, while iPads and Macs use
2x images. I used images that show a text with their size. “image size 400 by 400” means the image is
upscaled to 800 by 800 points for 2x resolution and 1,200 by 1,200 points for 3x resolution.

8 9

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/5-6-sizing-images

Using Images in SwiftUI

To use an image, simply call the Image view and provide the image name from the asset catalog. For
example, Image("test") will display the image named “test”. By default, SwiftUI selects the appropriate
image based on the device’s screen resolution.

struct ImageFitScalingView: View {
 var body: some View {
 Image(.test)
 }
}

Resizing Images

Images have a fixed size per default. In order to make them scale, you need to apply the resizable()
modifier. However, this modifier doesn’t preserve the image’s aspect ratio, resulting in stretching.

struct ImageScalingView: View {
 var body: some View {
 Image(.cat1)
 .resizable()
 }
}

9 0

To maintain the aspect ratio, we can use the aspectRatio modifier with the fit content mode. This ensures
the image fits exactly to the edges of the screen while preserving its natural aspect ratio. Similarly, you
can also use scaleToFit:

struct ImageScalingView: View {
 var body: some View {
 Image(.cat1)
 .resizable()
 //.aspectRatio(nil, contentMode: .fit)
 //.aspectRatio(contentMode: .fit)
 .scaledToFit()

 }
}

In some cases, we may want to fill the entire screen with an image. To achieve this, we can use the
aspectRatio modifier with the fill content mode. This scales the image to fill the frame, potentially
overflowing the edges. To include the safe area as well, we can use the ignoresSafeArea modifier.

struct ImageScalingView: View {
 var body: some View {
 Image(.cat1)
 .resizable()
 //.aspectRatio(nil, contentMode: .fill)
 //.aspectRatio(contentMode: .fill)
 .scaledToFill()

 }
}

Reframing Images

Sometimes, we may want to set a specific frame for an image. We can achieve this by combining the
frame modifier with the resizable modifier. However, the aspect ratio of the image might not fit with the
frame. If you use scaleToFit, the image will be scaled until one of its edges
touches the frame:

Image(.beach)
 .resizable()
 .scaledToFit()
 .frame(width: 200, height: 200)
 .border(Color.blue)

To make the image fill the frame use the scaleToFill modifier. This will however overflow the frame. If we
want to clip the image to its frame, we can add the clip modifier.

Image(.beach)
 .resizable()
 .scaledToFill()
 .frame(width: 200, height: 200, alignment: .trailing)
 .border(Color.blue)

91

To fine-tune which areas of the image are visible within the frame, we can use the alignment property of
the frame modifier. By default, it is set to center, but we can also use leading, trailing, top, or bottom
depending on the desired result.

Ideally, all our images would have the same aspect ratio, eliminating the need for fixing and clipping.
However, when working with images downloaded from the server, we may encounter various aspect
ratios. By using the frame and clip modifiers, we can handle different aspect ratios and adjust which
areas of the image are visible within the frame.

Setting a Frame Aspect Ratio

One thing I always struggled with, is setting a frame aspect ratio that changes the size of the image but
keeps its natural image aspect ratio. Here are 3 examples where I set the frames aspect ratio to 1, 2, and
0.75. These images scale to fit the screen size:

In order to get this working, I have to use another view as the placeholder. I am using a color view
because it is a greedy view and resizes. To this view, I can attach the aspectRatio modifier with the
desired value. This is occupying the space I want. The image itself is added in the overlay to this
placeholder and thus gets the same size as the placeholder.

9 2

I use a scale to fill and clip to make sure it only is displayed in the area of the placeholder. This is quite a
bit of complexity but gets the job nicely done.

struct ImageAspectView: View {

 let imageName: String
 let frameAspectRatio: CGFloat

 var body: some View {
 Color.cyan // Placeholder
 .aspectRatio(frameAspectRatio, contentMode: .fit)
 .overlay {
 Image(imageName)
 .resizable()
 .aspectRatio(nil, contentMode: .fill)
 }
 .clipped()
 }
}

5.7 Upscaling images and Bitmap vs Vector graphics

When working with images, there may be situations where you need to upscale them to fit a certain
frame. Let’s take a look at an example with a 25 by 30-pixel large png image:

Image(.avocadoSmall)
 .resizable()
 .frame(width: 100, height: 100)

In this example, we have a small image of an avocado that we want to upscale. By using the resizable()
modifier and setting a frame width and height, we can increase the size of the image. However, when
upscaling, you may notice that the image becomes pixelated.

To address this, SwiftUI provides an interpolation parameter that allows you to control how the image is
upscaled. The default interpolation mode tries to adjust the image using some interpolation techniques.
However, if you want to maintain the pixelated look, you can set the interpolation mode to none.

Image(.avocadoSmall)
 .resizable()
 .interpolation(.none)
 .frame(width: 100, height: 100)

9 3

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/5-6-sizing-images/topics/5-7-upscaling-images-and-bitmap-vs-vector-graphics

Additionally, you can use the tile option to repeat the image instead of stretching it to fill the frame. This
can be useful for creating visual effects or backgrounds.

Image(.avocadoSmall)
 .resizable(capInsets: .init(top: 10, leading: 10, bottom: 0, trailing: 0),
 resizingMode: .tile)
 .frame(width: 200, height: 200)

Vector Graphics

Bitmap graphics, such as JPEGs, store image information bit by bit or point by point. On the other hand,
vector graphics store drawing instructions. Let’s explore the advantages of vector graphics:

• Resolution Independence: Vector graphics are rendered during runtime, allowing for infinite scalability.
This means you are not limited by image sizes anymore.

• Sharp Edges: Vector graphics maintain sharp edges regardless of the size they are rendered.

To demonstrate this, let’s use a PNG (bitmap) image and a SVG (vector) image:

Image(.rocketLunch) // png
 .renderingMode(.template)
 .foregroundColor(.accent)

Image(.rocketLunchGraphic) // svg
 .resizable()
 .renderingMode(.template)
 .foregroundColor(.accent)
 .scaledToFit()
 .frame(width: 100)

Image(.rocketLunchGraphic) // svg
 .resizable()
 .scaledToFit()
 .frame(width: 300)

In this example, the PNG image is displayed at its original size of 32x32
pixels, while the SVG image takes on the size defined in the drawing

9 4

instructions. As you can see, the SVG image maintains sharp edges, thanks to its vector nature. This
ensures that the image always looks sharp, regardless of the size.

By changing the image to use the render mode of template you can also change the foreground color
gradient of the image. This works also with png format:

struct GradientSpidermanView: View {
 var body: some View {
 Image("spiderman")
 .resizable()
 .renderingMode(.template)
 .foregroundStyle(LinearGradient(colors: [Color.pink, Color.purple],
 startPoint: .topLeading,
 endPoint: .bottomTrailing))
 .scaledToFit()
 .padding([.leading, .top])
 .background(Color.backgroundColor2)

 Spacer()
 }
}

5.8 Sizing System Icons

System icons behave a little differently than images from the assets, mainly because they can be used
together with text. To demonstrate this, let’s start by creating a label that combines a text and a system
icon. We can achieve this by using a Label view. For example, we can create a label with the text “Swift”
and the Swift icon:

Label("Swifty", systemImage: "swift")

9 5

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/5-6-sizing-images/topics/5-8-sizing-system-icons

By default, the system icon is aligned to the text and scales with it. This means that if you use dynamic
type variants, both the image and the text will scale nicely together.

Image Styling

Additionally, since system icons behave like text, you can use the foregroundColor or foregroundStyle
modifiers to change their color. For example, you can apply the accent color or any other color you prefer.

Label("Swifty", systemImage: "swift")
 .foregroundColor(.orange)

Image(systemName: "checkmark.circle")
 .foregroundStyle(.blue, .red)

Resizing System Icons

To resize system icons, you have several options. You can specify a specific font size or use a system
size. You can also apply different font weights to the image, like bold or black, to make it stand out. For
example:

Image(systemName: "gear")
 .font(.title)

Image(systemName: "gear")
 .font(.system(size: 20))

Image(systemName: "gear")
 .font(.system(size: 20))
 .fontWeight(.black)

If you want to make your icons more visually appealing, you can adjust their size using the imageScale
modifier. This allows you to make the icons larger or smaller than the default size. You can choose from
options like .small, .medium (default), or .large. By adjusting the image scale, you can deviate from the
text size slightly. This also adapts to dynamic type variants.

9 6

Image(systemName: "swift")
 .imageScale(.small)
Image(systemName: "swift")
 .imageScale(.medium)
Image(systemName: "swift")
 .imageScale(.large)

Alternatively, you can use the frame modifier to set a specific size for the system icon. This approach
treats the icon as an image and allows you to define a fixed width and height. For example:

Image(systemName: "lasso.badge.sparkles")
 .font(.system(size: 20))
 .border(Color.yellow)

Image(systemName: "lasso.badge.sparkles")
 .resizable()
 .frame(width: size, height: size)
 .border(Color.yellow)

The sizes of the images vary depending on whether you treat them like text (with font) or as an image with
resizable. The 2 examples above are mainly different in height. The icon image text uses the text height.

5.9 AsyncImage

In this section, we will explore how to effectively size and display images that are downloaded from a
server. With the release of iOS 15, Apple introduced the AsyncImage view, which simplifies the process of
downloading and displaying images asynchronously. The most basic use of AsyncImage is:

AsyncImage(url: URL(string: “https://picsum.photos/id/12/200"))

In this example, we use the AsyncImage initializer that takes a URL to handle the downloaded image. We
provide a URL to the Lorem Picsum service, which uses a dummy image with a size of 200 by 200 pixels.
SwiftUI will use 200 by 200 points to display the image, which makes it look very blurry on a high
resolution iPhone.

If you want to resize a downloaded image, you need to use a different AsynImage initializer:

AsyncImage(url: URL(string: "https://picsum.photos/id/12/600")) { image in
 image.resizable()
} placeholder: {
 ProgressView()
}
.frame(width: 200, height: 200)

The closure receives the downloaded image as a parameter and we can apply any necessary
modifications, such as making it resizable and setting its frame. I am using a 600 by 600 pixel image
and set its frame to 200 by 200 points.

9 7

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/5-6-sizing-images/topics/5-9-asyncimage

In the blow screen, you can see the more blurry image on top that only has a resolution of 200 by 200
and the higher resolution sharper image on the bottom:

Displaying Images for the Device Screen Resolution

To ensure that the downloaded image is displayed with the correct size, we need to consider the
screen’s resolution. We can use the Environment property displayScale to determine the scale factor of
the screen. For example, on an iPhone, the scale factor would be 3. We can then multiply the desired size
by the scale factor to obtain the appropriate image size.

struct AsyncImageExampleView: View {

 let baseURLString = “https://picsum.photos/id/12/"

 @Environment(\.displayScale) var scale

 let size: CGFloat = 200
 var urlString: String {
 baseURLString + "\(Int(size * scale))"
 }

 var body: some View {

9 8

 AsyncImage(url: URL(string: urlString)) { image in
 image.resizable()
 } placeholder: {
 ProgressView()
 }
 .frame(width: size, height: size)
 }
 }
}

In this updated example, we calculate the appropriate image size based on the screen’s scale factor. We
construct the URL using the calculated size and pass it to the AsyncImage initializer. The downloaded
image is then displayed with the correct size.

Handling Placeholder and Error States

AsyncImage provides additional functionality for handling placeholder and error states. We can specify
a placeholder view to be displayed while the image is being loaded, and we can handle loading errors
using the image phase of the AsyncImage initializer.

struct AsyncImageExampleView: View {

 let baseURLString = "https://picsum.photos/id/12/"

 @Environment(\.displayScale) var scale
 let size: CGFloat = 200
 var urlString: String {
 baseURLString + "\(Int(size * scale))"
 }

 var body: some View {
 AsyncImage(url: URL(string: urlString),
 scale: 3,
 transaction: .init(animation: .bouncy)) { phase in
 switch phase {
 case .empty:
 ZStack {
 Color.gray
 ProgressView()
 }
 case .success(let image):
 image.resizable()
 case .failure(let error):
 Text(error.localizedDescription)
 // use placeholder for production app
 @unknown default:
 EmptyView()
 }
 }
 .frame(width: size, height: size)
 }
}

In this updated example, we handle different phases of the image-loading process using a switch
statement. We display a ProgressView as a placeholder while the image is being loaded, show the

9 9

downloaded image on success, and display an error message on failure. We also handle any unknown
cases with an EmptyView.

The frame is added around the AsyncImage. This assures that the view has in all states the same size.
This is important when you want to lazily load images in a list or scroll view and want to ensure that the
scrolling is smooth and without jumps.

Downloading Images that Fit Perfectly

In some cases, we may want to download an image that fits perfectly within a given area, maintaining its
aspect ratio. I want to download an image that is large enough so looks sharp that is the right resolution
and that takes up exactly the space on the screen. But not more, since I don't want to download more
data than necessary. This is especially important when your user is on mobile data.

To achieve this, we can use the GeometryReader view to determine the available size and calculate
the appropriate image size. The following code would calculate the size of a square image since I am
using the same value for the height and width of the image:

struct SizedAsyncImageExampleView: View {

 let baseURLString = "https://picsum.photos/id/12/"
 @Environment(\.displayScale) var scale

 var body: some View {
 GeometryReader(content: { geometry in
 AsyncImage(url: url(in: geometry.size.width)) { phase in
 …
 }
 .frame(width: geometry.size.width,
 height: geometry.size.width)
 })
 }

 func url(in width: CGFloat) -> URL? {
 let imageWidth = width * scale
 let urlString = baseURLString + "\(Int(imageWidth))"
 return URL(string: urlString)
 }
}

10 0

Next, to correctly download the image and keep its aspect ratio, I need to know the image dimensions.
For the Lorem Ipsum AP, I am downloading this information from the server first. Here is the basic
information of the data model:

struct PicsumPhoto: Codable, Identifiable {
 let id: String
 let author: String
 let width: CGFloat
 let height: CGFloat
 let url: String
 let downloadUrl: String

 var aspectRatio: CGFloat {
 width / height
 }

 static func example() -> PicsumPhoto {
 PicsumPhoto(id: "63",
 author: "Justin Leibow",
 width: 5000,
 height: 2813,
 url: "https://unsplash.com/photos/ZJsseAxEcqM",
 downloadUrl: "https://picsum.photos/id/63/5000/2813")
 }
}

I am getting the width and height of the full image and using it to calculate the aspect ratio. This
information is used in the SwiftUI view when I calculate what image I want to download in the url function:

struct AspectRatioSizedAsyncImageExampleView: View {

 let photo = PicsumPhoto.example()
 let baseURLString = "https://picsum.photos/id/"
 @Environment(\.displayScale) var scale

 var body: some View {
 GeometryReader(content: { geometry in
 AsyncImage(url: url(in: geometry.size.width),
 scale: 3,
 transaction: .init(animation: .bouncy)) { phase in
 …
 }
 .frame(width: geometry.size.width,
 height: geometry.size.width / photo.aspectRatio)

101

 })
 }

 func url(in width: CGFloat) -> URL? {
 let imageWidth = width * scale
 let imageHeight = imageWidth / photo.aspectRatio
 let urlString = "\(baseURLString)\(photo.id)/\(Int(imageWidth))/\
(Int(imageHeight))"
 return URL(string: urlString)
 }
}

In this example, we use the GeometryReader to determine the available width and calculate the
corresponding height based on the aspect ratio of the image. We then construct the URL using the
calculated width and height and pass it to the AsyncImage initializer. The downloaded image is displayed
with the correct aspect ratio and fits perfectly within the available area.

Loading Mechanism

SwiftUI will take care of loading the image asynchronously using the provided URL. It manages the
download and caching of the image, so you don't have to write custom networking code for image
loading. If the view disappears before the download is complete, the URL request is canceled.

Animations

You can use the transaction parameter of AsyncImage to add an animation when the image is shown.
This will add a fade in animation:

AsyncImage(url: …,
 transaction: .init(animation: .bouncy(duration: 1))) { phase in
 …
}

10 2

5 .10 A S P E C T R AT I O

In this section, we will explore the concept of aspect ratio in SwiftUI. Aspect ratio allows us to control the
proportions of our views, ensuring they maintain a specific width-to-height ratio.

Aspect ratio can be attached to any view, but it may not work for all views. For instance, if we try to use
an aspect ratio of 1.5 with a fill mode on a Text view, the view won’t change. This is because Text
views are designed to preserve their own aspect ratio to avoid distortion.

However, aspect ratio works well with shapes like rectangles, ellipses and circles. Circles naturally
maintain an aspect ratio of 1, so applying an aspect ratio modifier won’t change their appearance. On the
other hand, if we use an ellipse, it can stretch in both directions. To prevent stretching, we can set an
aspect ratio of 1 to make the ellipse appear as a circle again.

Ellipse()
 .fill(Color.orange)
 .aspectRatio(1, contentMode: .fit)
 .frame(height: 100)

Ellipse()
 .fill(Color.indigo)
 .aspectRatio(1.5, contentMode: .fit)
 .frame(height: 100)

Aspect ratio can also be used with colors, specifically with stretchy views
that expand in two directions. For example, if we use a color with an
aspect ratio of 2, it will occupy the available space while maintaining the
desired aspect ratio.

Color.cyan
 .aspectRatio(2, contentMode: .fit)

Instead of adding aspect ratio to individual views, we can also apply it to a whole stack. For instance, we
can use a ZStack with colors and add a text view. By applying an aspect ratio to the ZStack, both the
colors and the text will have the same aspect ratio.

ZStack {
 Color.cyan
 Text("this is a text that is a bit longer")
}
.aspectRatio(1, contentMode: .fit)
.frame(height: 100)

10 3

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/5-10-aspect-ratio

Additionally, aspect ratio can be applied to an HStack. Let’s create an HStack with three shapes: an
ellipse, a rounded rectangle with a corner radius of 25, and a rectangle. We can then set an aspect ratio
of 4 to the HStack, making its width four times its height.

HStack {
 Text("Shapes")
 Ellipse()
 .stroke(Color.red)
 RoundedRectangle(cornerRadius: 25.0)
 .fill(Color.green)
 Rectangle()
 .fill(Color.yellow)
}
.aspectRatio(2, contentMode: .fit)
.padding()

In some cases, when working with images, aspect ratio may not be the best option. By default, images
in SwiftUI are resizable and will stretch to fill the available space. If we want to preserve the image’s
aspect ratio, we can use the scaleToFit or scaleToFill modifiers instead of aspect ratio.

However, if we need to set a specific frame size for an image while maintaining its aspect ratio, we can
use a neat trick. We can create a self-resizing image view that respects the aspect ratio of the image,
but allows us to set a separate frame aspect ratio. This way, we can handle the layout and drawing of the
image separately.

5 .11 S C A L E E F F E C T

The scaleEffect modifier allows us to adjust the scale of a view, influencing its layout and how space is
distributed. Let’s create an HStack and add three views to it.

HStack {
 Text("Hello, World!")
 Text("Make me larger")
 .foregroundStyle(.accent)
 .padding()
 .background(Color.yellow)
 Text("After the shape")
}

By using Text views within the HStack, the space is distributed evenly, and we can see all three text
views. Now, let’s apply the scaleEffect modifier to the “Make me larger” view. You can specify a scale
value for both the horizontal and vertical directions, independent of each other.

HStack {
 Text("Hello, World!”)
 .zIndex(1)
 Text("Make me larger")

10 4

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/5-11-scale-effect

 .foregroundStyle(.accent)
 .padding()
 .background(Color.yellow)
 .scaleEffect(x: 1.5, y: 1.5)
 Text("After the shape")
}

As you can see, the view is scaled up from the center, and the view moves outward from the center. You
can also use other anchor points like .leading or .topTraiing:

.scaleEffect(x: 1.5, y: 1.5, , anchor: .leading)

However, there are a few things to keep in mind when using the scaleEffect modifier.

- layout neutral changes: scaleEffect only scales the visible part of the view and doesn’t change the
layout.

- The original “Make me larger” text still occupies the same area. But it becomes larger, the view can
overlay other views next to it.

- It simply scales up without rendering additionally. Thus your view can look blurry. It’s best not to
overdo the scaling. A scale of 1.5 and 1 is often a good choice.

Use Cases

Scale effect modifier can be used for resizing views, it’s often more suitable for animation effects. For
instance, you can create fancy background animations. It is a good fit if you want to add scroll animations
because the layout is not changed, the views inside the scrolling spacing stays constant and the scrolling
can remain smooth. By animating the scale, you can make views appear smaller when entering the scroll
view and scale them up to their appropriate size, creating visually appealing scroll animations.

10 5

5 .12 C O N T E N T E D G E S : S A F E A R E A , PA D D I N G A N D
M A R G I N S

In this section, we will explore how to add white space and adjust the layout of individual views using
content edges or insets. We will cover concepts such as the safe area, padding, and margins.

Understanding the Safe Area

The safe area refers to the space on the screen that is not occupied by system elements like the time, Wi-
Fi connection, and battery life indicators. By default, views do not use these areas to avoid overlapping
with important system information.

To visualize the safe area, you can run your app on the simulator and observe the top and bottom areas
that are not occupied. If you want to fill these areas with your content, you can use the
edgesIgnoringSafeArea modifier. In iOS 14 and later, you can use ignoresSafeArea(.all) to ignore all safe
areas or specify a specific edge like .bottom to only use the bottom area.

Image(.cat1)
 .resizable()
 .scaledToFill()
 .ignoresSafeArea(.container, edges: .all)

10 6

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/5-12-content-edges-safe-area-padding-and-margins
https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/5-12-content-edges-safe-area-padding-and-margins

Adding Padding to Views

Padding is a way to add space around a view. You can apply padding to any view using the padding()
modifier. The amount of padding applied depends on the device and its available space. On an iPhone,
the padding will be smaller compared to an iPad.

Text("Hello, World!")
 .padding()
 .background(Color.yellow)

To set a specific padding value, you can use the padding(_:)
modifier. For example, padding(50) adds 50 points of padding
around the view in all directions.

Text("Hello, World!")
 .padding(50)
 .background(Color.yellow)

You can also specify the direction of padding using arguments like .horizontal or .leading. If you need to
add multiple paddings, you can either provide an array of edges or chain multiple padding(_:) modifiers.

Text("Hello, World!")
 .padding([.top, .horizontal], 50)
 .background(Color.yellow)

Text("Hello, World!")
 .padding(.vertical, 10)
 .padding(.horizontal, 20)
 .background(Color.yellow)

Padding is particularly useful when you want to create white space around text or prevent views from
touching the edges.

Content Margins for Scrollable Views

Content margins allow you to add edges or margins to scrollable content, such as scroll views or text
editors. They provide more control over the layout of the content within these views. The
contentMargin(_:) modifier can be used with a scroll view or a text editor.

ScrollView {
 ResizableImageView(imageName: "cat_2")

 VStack(alignment: .leading, spacing: 10) {
 Text(Lorem.title)
 .font(.title)
 Text(Lorem.paragraphs(3))
 }
}

10 7

.contentMargins(20)

.contentMargins(5, for: .scrollIndicators)

On the left, you see the scroll view without the content margins, and on the right with a margin of 20
points. Additionally, I added 5 points to the scroll indicator, so that it does not overlap the views anymore:

Content margins can be set in both horizontal and vertical directions using arguments like .horizontal and
.vertical. You can also specify specific values in points for more precise control over the margins.

.contentMargins(.trailing, 20)

Content margins are especially useful when you want to fine-tune the layout of scrollable content or add
margins to text editors:

struct TextEditorInsetExampleView: View {
 @State private var text = "something amazing ...
something is coming here"

 var body: some View {
 TextEditor(text: $text)
 .border(Color.black)
 .contentMargins(.horizontal, 20)
 .contentMargins(.vertical, 5)
 }
}

10 8

5 .13 C O N TA I N E R R E L AT I V E F R A M E

In iOS 17, we now have a new way to size views called container relative frame. This allows us to size
views relative to the container they are inside. The great thing about Container Relative Frame is that it
adapts well to different screen sizes. Also, you can replace a lot of use cases for GeometryReader with it.

For example, I want to frame an image and set its height to 33% of the available space

Using the container relative frame, you can specify the axis and length to determine the direction and size
of the view relative to the container. For example, if I want to scale something vertically, I can set the axis
to vertical and return the length divided by two. This means the view will take up 50% of the available
space.

VStack(spacing: 0) {
 Image(.cat1)
 .resizable()
 .scaledToFill()
 .containerRelativeFrame(.vertical) { length, axis in
 return length / 2
 }
 .clipped()

 Color(white: 0.8)
}

Example: ScrollView with Onboarding

Container Relative Frame becomes particularly useful when working with scroll views. Let’s consider a
scenario where we have a horizontal scroll view with three colors: blue, red, and yellow. By default, the
scroll view applies a fixed size to its content, resulting in small color blocks. However, we can use
Container container-relative frame with the axis set to horizontal to make each color block take up the
entire screen.

10 9

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/5-13-container-relative-frame

struct ScrollColorExampleView: View {

 let colors = [Color.blue, Color.red, Color.yellow]

 var body: some View {
 ScrollView(.horizontal) {
 HStack {
 ForEach(colors, id: \.self) { color in
 color
 .containerRelativeFrame([.horizontal, .vertical])
 }
 }
 }
 }
}

Now, when we scroll horizontally, each color block fills the screen, providing a convenient and adaptive
layout. This saves us from using a geometry reader or setting fixed frames for each color block.

Container Relative Frame can also be handy when creating onboarding sequences or slideshows. For
example, you can use it to slide through a series of images.

Example: Container Relative Frame for Grid Layouts

Additionally, Container Relative Frame has a parameter called count and span, which is useful for
creating grid views. By specifying the count and span, you can control the number of items displayed in a
stack.

110

 let inspriations = NatureInspiration.examples()
 let spacing: CGFloat = 10

ScrollView(.horizontal) {
 LazyHStack(spacing: spacing) {
 ForEach(inspriations) { inspiration in
 ImageAspectView(imageName: inspiration.imageName,
 frameAspectRatio: 1)
 .containerRelativeFrame(.horizontal,
 count: 2
 spacing: spacing)
 }
 }
}

I used a scroll view with a horizontal axis and a ForEach loop to display a collection of images. To ensure
the images maintain a square aspect ratio, I used a resizable Image Aspect Ratio view.

I set the container relative frame to 2 images with the count property. This allowed me to display
exactly 2 images on the screen at once, regardless of the screen size. I could even adjust the span to
show fractions of images, such as one and a half or two and a half. This flexibility ensures a consistent
and adaptive layout across various devices.

.containerRelativeFrame(.horizontal,
 count: 7,
 span: 2,
 spacing: spacing)

111

You can set more fine-grained frame rules with the container length:

.containerRelativeFrame(.horizontal, alignment: .leading) { length, axis in
 if axis == .horizontal {
 if length > 500 {
 return length * 0.20
 } else {
 return length * 0.40
 }

 } else {
 return length
 }
}

By checking the length and adjusting the return value, I could control the number of images displayed
based on the screen width. This approach is particularly useful when you want to show more or fewer
items on much larger screens like the iPad.

Container Relative Frame is a powerful addition to SwiftUI’s layout capabilities. It allows for flexible and
adaptive views without the need for fixed values. Whether you’re working with scroll views or other
container views like windows, columns, tabs, or lists, Container Relative Frame provides a neat solution.
It’s a valuable tool, especially when dealing with complex layouts like scroll views. However, if you don’t
require a scroll view, using flexible frames may suffice.

For more examples and in-depth explanations of Container Relative Frame, be sure to check out the
scroll view section in this course.

112

5 .14 C O R N E R R A D I U S , C L I P A N D M A S K

In this section, we will explore how to manipulate the size and shape of views in SwiftUI. Specifically, we
will focus on using corner radius, clip, and mask modifiers to achieve the desired effects.

Corner Radius

The simplest way to modify the shape of a view is by applying a corner radius. By using the cornerRadius
modifier, you can round the corners of any view.

Text("Hello, World!")
 .padding()
 .background(Color.yellow)
 .cornerRadius(15)

In this example, we apply a corner radius of 15 to a text view with a yellow background. You can also
apply corner radius to other types of views, such as shapes or images.

Clip Shape

To achieve more complex shapes, we can use the clipShape modifier. This modifier allows us to clip a
view to a specific shape. For instance, we can create a rounded rectangle or a circle:

Text("Hello, World!")
 .padding()
 .background(Color.yellow)
 .clipShape(RoundedRectangle(cornerRadius: 15))

Text("Hello, World!")
 .padding()
 .background(Color.yellow)
 .clipShape(Capsule())

Image(.cat1)
 .resizable()
 .scaledToFill()
 .frame(width: 100, height: 100, alignment: .center)
 .clipShape(Circle())

113

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/5-14-cornerradius-clip-and-mask

Clipped Views

Sometimes, views may overflow the layout area, causing unwanted effects. To ensure that a view stays
within its designated area, we can use the clipped modifier. This modifier restricts the view to the layout
area, cutting off any overflowing portions. For example:

Image(.cat1)
 .resizable()
 .scaledToFill()
 .frame(width: 100, height: 100, alignment: .center)
 .clipped()

In this case, the image is scaled up and overflows the layout area. By applying the clipped modifier, we
ensure that only the dedicated layout area is visible.

114

Mask Modifier

For more advanced view manipulation, we can use the mask modifier. This modifier allows us to cut out a
view using another view as a mask. You could use a gradient:

LinearGradient(gradient: Gradient(colors: [.pink, .indigo, .cyan]),
 startPoint: .top, endPoint: .bottom)
 .frame(height: 40)
 .mask {
 Text("Colorful Text")
 .font(.title)
 .fontWeight(.heavy)
 }

A more complex example with cutting out part of an image. I am using here a text with a border:

ZStack {
 Image(.beach)
 .resizable()
 .scaledToFit()

 Image(.beach)
 .resizable()
 .scaledToFit()
 .blur(radius: 3.0) // icing glass effect like materiels
 .mask(alignment: .bottomLeading) {
 Text("Use this to mask the image")
 .font(.title)
 .fontWeight(.heavy)
 .padding()
 .border(Color.black, width: 10)
 .padding()
 }
 .opacity(0.8)
 .brightness(0.60)
 .shadow(radius: 1)
}

115

In this example, we use a linear gradient as a mask to create a semi-transparent effect on the image.
We can also stack multiple views with different opacities and brightness levels to achieve interesting
effects.

C H A L L E N G E 🖐 S U P E R H E R O D E TA I L V I E W

Your goal is to create a layout that features the superhero image in the background. The image is a PNG
with a transparent background. You can fill the entire area with a black gradient. The main content is a
ScrollView with a title, biography, and quotes of the superhero data.

To achieve the desired layout, you will need to make use of alignment, padding, and material effects for
the quotes. We also want to incorporate alternating styling with a bit of distance from the edges.

Main Component: ZStack

The main component of the layout is a ZStack. I place the background image first in the ZStack, and on
top of it, we add a scroll view containing the text information. The image is scaled to fit and has a linear
gradient applied to it, creating a shaded effect towards the top. To achieve the gradient background, I use
a black color. I used 2 flexible frames to size the image and black gradient background.

struct MarvelView: View {
 let superHero: SuperHero
 var body: some View {
 ZStack(alignment: .bottom) {
 Image(superHero.imageName)
 .renderingMode(.template)
 .resizable()
 .scaledToFit()
 .foregroundStyle(LinearGradient(colors: [Color.white, Color.black],
 startPoint: .top,
 endPoint: .bottomLeading))
 .frame(maxWidth: .infinity, maxHeight: 600, alignment: .topTrailing)
 .frame(maxHeight: .infinity, alignment: .top)
 .background(Color.black.gradient)

 ScrollView {
 …
 }
 }
 }
}

116

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/%F0%9F%96%90%EF%B8%8F-challenge-superhero-detail-view

Scroll View: VStack and Offset

Within the scroll view, I use a VStack to arrange the different components vertically. To create the offset at
the top, we add a large padding to the top area. This ensures that the text doesn’t start right at the top of
the scroll view. Instead of using the offset modifier, I simply add extra space at the top.

ScrollView {
 VStack(alignment: .leading, spacing: 10) {
 Text(superHero.name)
 .font(.largeTitle)
 .bold()

 Text("Biography")
 .bold()
 .padding(.top)
 Text(superHero.biography)

 Text("Quotes")
 .bold()
 .padding(.top)

 VStack(alignment: .leading) {
 ForEach …

 }
 .padding(.leading)

 }
 .foregroundStyle(.white)
 .padding()
 .padding(.top, 200)
}

I also apply padding around everything within the scroll view to prevent the text from touching the edges.

Alignment and Quotes Styling

To properly align the title with the biographies, we use leading alignment within the VStack. For the
quotes, we use an ultra-thin material as the background and add a larger padding of 50 to either the
leading or trailing edge. The choice between leading or trailing edge depends on the index of the quote.
To achieve this, I use the enumerate function on the quotes array, which provides us with the index.
Based on whether the index is even or odd, we add the padding to the leading or trailing edge
accordingly.

ForEach(Array(superHero.quotes.enumerated()), id: \.offset) { (index, quote) in
 Text(quote)
 .italic()
 .padding(15)
 .background(.ultraThinMaterial)
 .cornerRadius(5)
 .padding(index.isOdd ? .leading : .trailing, 50)
 .frame(maxWidth: .infinity,
 alignment: index.isOdd ? .trailing : .leading)

}

117

6 . R E U S A B L E L AYO U T C O M P O N E N T S
In this section, we will explore how to write reusable components in SwiftUI to effectively organize and
structure your code. While this topic may not be directly related to layout, it plays a crucial role in
enhancing code reusability and maintainability.

By organizing your views with functions and subviews, utilizing view builders, creating custom
modifiers, and writing custom container views, you can enhance code reusability and improve the
overall structure of your SwiftUI projects.

It is important to note that there is no right or wrong way to structure your code. The goal is to make it
easily understandable and manageable for yourself and future developers. Experiment with different
approaches and find what works best for your specific requirements.

6 .1 M A K I N G YO U R S W I F T U I V I E W S M O R E R E U S A B L E

In order to organize and work easier with your code, you might want to shorten your views and reorganise
them into smaller more manageable chunks. Let’s use the following as a simple example:

struct ReusableComponentsExampleView: View {
 let isLoggedIn: Bool = false

 var body: some View {
 VStack(alignment: .leading) {
 Text("How to organize and structure your code")
 .font(.title)

 Divider()

 if isLoggedIn {
 Label("You are logged in", systemImage: "person")
 } else {
 Text("You need to log in")
 }
 }
 .padding()
 }
}

The if-else statement makes it more complex and I want to extract this into its separate entity.

118

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/6-1-making-your-swiftui-views-more-reusable

View Organization with Subviews

Typically, you would extract subviews by selecting the desired code and creating a new view. You can
then pass any necessary properties to the subview, making it more flexible and reusable.

struct MySubView: View {

 let isLoggedIn: Bool

 var body: some View {
 if isLoggedIn {
 Label("You are logged in", systemImage: "person")
 } else {
 Text("You need to log in")
 }
 }
}

Utilizing View Builders

In SwiftUI, you often make use of @ViewBuilder with closures that return SwiftUI Views. @ViewBuilder is a
parameter attribute that allows to return of multiple views from a closure or for closures with conditionals.
It can be used for computed properties, functions, or container views with view passing closures.

For instance, you can create custom functions or computed properties that return a some View type. By
using the @ViewBuilder attribute, you can return multiple views within the closure. This allows for more
flexibility and cleaner code:

@ViewBuilder
func createLogginInfo() -> some View {
 Label("You are logged in", systemImage: "person")
 Text("Take advanage of pro features")
}

Extracting Views as Computed Properties

If I continue with the example from above and extract the conditional statement as a computed property:

119

struct ReusableComponentsExampleView: View {
 let isLoggedIn: Bool = false

 var body: some View {
 VStack(alignment: .leading) {
 Text("How to organize and structure your code")
 .font(.title)

 Divider()
 logInStateView
 }
 .padding()
 }

 @ViewBuilder
 var logInStateView: some View {
 if isLoggedIn {
 Label("You are logged in", systemImage: "person")
 } else {
 Text("You need to log in")
 }
 }
 }

I have to add the @ViewBuilder in front of the computed property because I am returning 2 different views
from the conditional.

Alternatively to @ViewBuilder you can also embed the conditional in a Group. This will return a single view
Group:

 var logInStateView: some View {
 Group {
 if isLoggedIn {
 Label("You are logged in", systemImage: "person")
 } else {
 Text("You need to log in")
 }
 }
 }

Extracting Views as Functions

Similar to computed properties you can also write functions that generate views. The same view from
above could be using instead a function:

struct ReusableComponentsExampleView: View {
 let isLoggedIn: Bool = false

 var body: some View {
 VStack(alignment: .leading) {
 Text("How to organize and structure your code")
 .font(.title)

 Divider()

12 0

 logInStateView()
 }
 .padding()
 }

 @ViewBuilder
 var func logInStateView() -> some View {
 if isLoggedIn {
 Label("You are logged in", systemImage: "person")
 } else {
 Text("You need to log in")
 }
 }
 }

6 . 2 R E U S A B L E V I E W M O D I F I E R S

View modifiers are a powerful tool in SwiftUI that allows you to apply various modifications to your views.
While SwiftUI provides a range of built-in modifiers, you can also create your own custom modifiers to
encapsulate specific sets of modifications.

By creating custom modifiers, you can keep related modifications together and apply them easily to
different parts of your app. This promotes code reusability and simplifies the process of applying
consistent styling or behavior across your views.

Example 1: Text Styling

Let’s start with a simple example of text styling. Imagine you have a box with some text inside, and you
want to apply multiple view modifiers such as foreground color, bold font, padding, and background
color. Initially, you might end up cluttering your code by adding these modifiers individually to each view.

Text("Hello, World!")
 .foregroundStyle(.white)
 .bold()
 .padding()
 .background(Color.cyan)

To avoid this repetition and make your code more reusable, you can create your own view modifier. Since
we want to create a view modifier, we won’t conform to the View protocol. Instead, we’ll conform to a
different protocol specifically designed for view modifiers.

struct BoxViewModifier: ViewModifier {

 func body(content: Content) -> some View {
 content
 .foregroundStyle(.white)
 .bold()
 .padding()
 .background(Color.pink)
 }
}

You can then apply this custom ViewModifier like so:

121

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/6-2-reusable-view-modifiers

Text("Hello, World!")
 .modifier(BoxViewModifier())

A shorter form that would be more SwiftUI-like is to write a function to
view. View modifiers in SwiftUI are defined as functions that modify the
view itself and return some View:

extension View {
 func boxStyling() -> some View {
 self.modifier(BoxViewModifier())
 }
}

Text("Hello, World!")
 .boxStyling()

Instead of a separate ViewModifier I could have instead directly added all the view modifiers like so:

extension View {
 func boxStyling() -> some View {
 self.foregroundStyle(.white)
 .bold()
 .padding(hori == .compact ? 10 : 30)
 .background(Color.pink) }
}

The advantage of custom ViewModifiers is that they can own state and access environment properties.
For example, if I wanted to change the padding depending on the horizontal size class, I could
accomplish this with a custom view modifier like so:

struct BoxViewModifier: ViewModifier {

 @Environment(\.horizontalSizeClass) var hori

 func body(content: Content) -> some View {
 content
 .foregroundStyle(.white)
 .bold()
 .padding(hori == .compact ? 10 : 30)
 .background(Color.pink)
 }
}

12 2

Example 2: Square Card Box Modifier

I want to make the following behavior for a squad card reusable:

ZStack {
 RoundedRectangle(cornerRadius: 25.0)
 .fill(Color.cyan.gradient)
 Text("Content in a card view which is using
 a aspect ratio of one")
 .padding()
}
.aspectRatio(1, contentMode: .fit)
.padding()

I am creating a function for Text view, but you can also make this work for all views by writing an
extension to view. In this example self refers to the text view itself:

extension Text {
 func squareBoxStyling() -> some View {
 ZStack {
 RoundedRectangle(cornerRadius: 25.0)
 .fill(Color.cyan.gradient)
 self.padding()
 }
 .aspectRatio(1, contentMode: .fit)
 }
}

And I can use the modifier to any Text view:

Text("Content in a card view which is using a aspect ratio of one")
 .squareBoxStyling()
 .padding()

Example 3: Image Resizing

Often times you can choose between a custom modifier and a subview. In a previous section, I
introduced the resizing image view:

struct ImageAspectView: View {

 let imageName: String
 let frameAspectRatio: CGFloat

 var body: some View {
 Color.cyan // Placeholder
 .aspectRatio(frameAspectRatio, contentMode: .fit)
 .overlay {
 Image(imageName)
 .resizable()
 .aspectRatio(nil, contentMode: .fill)
 }

12 3

 .clipped()
 }
}

I could achieve the same result with a modifier function:

extension Image {
 func resizeToFit(frameAspectRatio: CGFloat,
 cornerRadius: CGFloat = 0) -> some View {
 Color.cyan
 .aspectRatio(frameAspectRatio, contentMode: .fit)
 .overlay {
 self.resizable()
 .aspectRatio(nil, contentMode: .fill)
 }
 .clipped()
 .cornerRadius(cornerRadius)
 }
}

I am modifying an image and need to use the resizable modifier which is only allowed for images.
Therefore the function is attached in an extension to Image.

With the help of this image modifier, my resizing functionality becomes:

Image("fish_3")
 .resizeToFit(frameAspectRatio: 1)

6 . 3 B U T T O N S T Y L E

In SwiftUI, you can make view modifiers reusable by using custom view modifiers, such as card styles.
Additionally, some system-provided views like button toggles, sliders, lists, or forms have special
modifiers that only apply to their specific use case. For example, a list styling modifier for lists or a button
style for buttons.

In some cases, these system-provided views expose the protocol behind them, allowing you to write your
own styling modifiers. This is true for buttons and toggles, but not for all views like pickers, menus, or
lists. However, it can be quite advantageous. Let me give you an example:

struct CustomButtonStyle: ButtonStyle {
 @Environment(\.isEnabled) var isEnabled

 func makeBody(configuration: Configuration) -> some View {
 configuration.label
 .foregroundStyle(.white)
 .padding(.horizontal, 10)
 .padding(.vertical, 5)
 .frame(maxWidth: 400)
 .background {
 RoundedRectangle(cornerRadius: 5)
 .fill(configuration.role == .destructive ? .pink : .accent)

12 4

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/6-3-buttonstyle

 .shadow(radius: shadow(for: configuration.isPressed))
 }
 .scaleEffect(CGSize(width: configuration.isPressed ? 0.9 : 1,
 height: configuration.isPressed ? 0.9 : 1))
 .saturation(isEnabled ? 1 : 0)
 }

 func shadow(for isPressed: Bool) -> CGFloat {
 guard isEnabled else { return 2 }
 if isPressed {
 return 0
 } else {
 return 5
 }
 }
}

The button configuration has 3 main parameters:

• the label which is the display text for the button

• isPressed: a boolean that is true when the user presses or holds the button. Use this property to
animate the button interaction

• role: the role of the button that can be default, destructive, or cancel.

Additionally, I used the isEnabled property from the environment to make the button greyed out when it
is disabled.

When you test this in live preview and tap the button, it will scale down slightly and provide a press
animation. This feedback is important for users to understand that they have pressed something. If you
use an onTap gesture instead, you would not be able to add this important animation.

You can then use this styling for your buttons:

12 5

Button(role: .destructive, action: {

}, label: {
 Text("Button with custom Style")
})
.buttonStyle(CustomButtonStyle())

Button(role: .destructive, action: {

}, label: {
 Text("Button with custom Style")
})
.buttonStyle(CustomButtonStyle())
.disabled(true)

6 . 4 C U S T O M C O N TA I N E R V I E W S

When you come across good strategies, such as adapting for different screen sizes or device
orientations, you may want to make them more reusable. By writing your own containers that handle this
logic, you can create highly generic components that can be used in different parts of your app.

Example 1: Replicating a Button

Now, we will take it a step further and create a custom container view that is more generic. To
illustrate this, we will start by replicating a button.

	 Note: While replicating a button may not be the most practical use case for your projects, it
serves as a valuable exercise in understanding how SwiftUI internally handles such scenarios.

To begin, let’s look at the definition of SwiftUI button:

@available(iOS 13.0, macOS 10.15, tvOS 13.0, watchOS 6.0, *)
public struct Button<Label> : View where Label : View {

 /// Creates a button that displays a custom label.
 ///
 /// - Parameters:
 /// - action: The action to perform when the user triggers the button.
 /// - label: A view that describes the purpose of the button's `action`.
 public init(action: @escaping () -> Void, @ViewBuilder label: () -> Label)

 /// The content and behavior of the view.

 @MainActor public var body: some View { get }

 /// The type of view representing the body of this view.

 public typealias Body = some View
}

Button has 2 parameters for the action closure and the label closure. It uses a Generic type Label that
conforms to the view protocol. This allows to use any view as the label of a button:

12 6

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/6-4-custom-container-views

Button(action: {
 // do something
}, label: {
 Text(“Button”) // the label is a Text type
})

Button(action: {
 // do something
}, label: {
 Image(systemName: “gear") // the label is a Image type
})

Button(action: {
 // do something
}, label: {
 Label("Button", systemImage: “gear") // the label is a Label type
})

Replicating the system Button behavior with a similar initializer:

struct CustomButton<Label> : View where Label : View {

 let action: () -> Void
 let label: () -> Label

 init(action: @escaping () -> Void, @ViewBuilder label: () -> Label) {
 self.action = action
 self.label = label
 }

 var body: some View {
 HStack {
 label()
 }
 .foregroundColor(.accent)
 .onTapGesture {
 action()
 }
 }
}

In this example, we define a CustomButtonView struct conforming to the View protocol. It has two
properties: action, which is a closure representing the button’s action, and label, which is a closure
returning a view representing the button’s label.

By utilizing the @ViewBuilder parameter attribute, we can return multiple views within the

label closure. This allows for greater flexibility.

Example 2: Creating a Custom Container View

Now that we understand how to create a custom button, let’s explore a custom container view
example. I will reimagine the ViewModifier we previously created, called BoxViewModifier, as a
container view. It replicates a VStack with a custom styling:

12 7

struct CardContainer<Content> : View where Content : View {

 let content: () -> Content

 init(@ViewBuilder content: @escaping () -> Content) {
 self.content = content
 }

 var body: some View {
 ZStack {
 RoundedRectangle(cornerRadius: 25.0)
 .fill(Color.cyan.gradient)

 VStack(alignment: .center,
 spacing: 10,
 content: content)
 .padding()
 }
 .aspectRatio(1, contentMode: .fit)
 }
}

In this case, I define a CardContainerView struct conforming to the View protocol. It takes a generic

Content type, which represents the views to be contained within the container.

By utilizing the @ViewBuilder attribute, you can pass multiple views as the content parameter:

CardContainer {
 Text("Hello, World!")
 Text("second")
}

6 . 5 C U S T O M C O N TA I N E R S W I T H DY N A M I C DATA

Additionally, you can create container views that work with dynamic data, such as displaying an array of
items using a ForEach or a List. While this involves more advanced concepts and generics, it provides a
blueprint for creating reusable container views tailored to your specific needs.

I will use the following list view as an example, where I have an array of my NatureInspiration data. List
takes the array and for each element ask what view to show:

struct ContentView: View {

 let inspirations = NatureInspiration.examples()

 var body: some View {
 GeometryReader { geometry in
 List(inspirations) { inspiration in
 Image(inspiration.imageName)
 .resizable()
 .scaledToFill()
 .frame(width: geometry.size.width,
 height: geometry.size.width)

12 8

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/6-5-custom-containers-with-dynamic-data

 .clipped()
 .listRowSeparator(.hidden)
 .listRowInsets(.init(top: 0, leading: 0, bottom: 0, trailing: 0))
 }
 .listStyle(.plain)
 }
 }
}

I am using GeometryReader, List, and a few list customizers that make this view look more complex. I
would like to make this behavior more reusable and create a custom container view that holds most of
the logic.

To understand how to pass dynamic data, let's look at this initializer of List:

extension List {

 @MainActor public init<Data, RowContent>(_ data: Data, @ViewBuilder rowContent:
@escaping (Data.Element) -> RowContent) where Content == ForEach<Data,
Data.Element.ID, RowContent>, Data : RandomAccessCollection, RowContent : View,
Data.Element : Identifiable

}

There is a lot of Generics and Protocol conformance involved. Here is a breakdown:

• Data conforming to RandomAccessCollection. This is the array of data we are passing to the List. List
wants a collection and each element can be accessed very quickly be the index. This helps SwiftUI
performance and allows for smooth scrolling.

• Data.Element conforming to Identifiable. Each element in the Data collection should conform to
Identifiable.

12 9

• RowContent conforming to View. For each element in the data collection we have to return a
RowContent that is a view and can be displayed on screen.

If I use the same generics and protocol requirements for a custom view, this could look like so:

struct CustomConainer<Data, RowContent>: View where Data: RandomAccessCollection,
 Data.Element: Identifiable, RowContent: View {

 private let data: [Data.Element]
 private let rowContent: (Data.Element) -> RowContent

 init(_ data: Data,
 @ViewBuilder rowContent: @escaping (Data.Element) -> RowContent) {
 self.data = data.map({ $0 })
 self.rowContent = rowContent
 }

 var body: some View {
 GeometryReader { geometry in
 List(data) { element in
 rowContent(element)
 .frame(width: geometry.size.width,
 height: geometry.size.width)
 .clipped()
 .listRowSeparator(.hidden)
 .listRowInsets(.init(top: 0, leading: 0, bottom: 0, trailing: 0))
 }
 .listStyle(.plain)
 }
 }
}

In this custom container, we have two generic parameters: Data and RowContent. Data represents
the array of data points we want to pass in, and RowContent represents the view that will be
displayed for each data element.

To use our custom container view, we can simply pass in the data and the view that is shown for
each data point. For example, we can replace the List view in our previous example with the
CustomContainer view.

struct ContentView: View {
 let inspirations = NatureInspiration.examples()

 var body: some View {
 CustomConainer(inspirations) { inspiration in
 Image(inspiration.imageName)
 .resizable()
 .scaledToFill()
 }
 }
}

13 0

7. C U S T O M L AYO U T
In this section, I will show you how to create custom layouts in SwiftUI that cater to your specific needs.
So far, I have demonstrated the use of built-in containers like stacks and grids. However, there are
situations where you require more control and flexibility.

7. 2 G E O M E T RY R E A D E R

The first option I want to discuss is the GeometryReader. With this, you can obtain the size and area of a
view and make decisions on how to display and size its contents.

If you look at this simple example:

VStack {
 Text("Hello, World!")
 Text("Content")
 .background(Color.yellow)
}

And add a GeometryReader around the “Content” text. GeometryReader provides us with a closure
where we can access the geometry proxy that contains information about the available space. For
example, you can use the geometry.size.width and height property to set the frame around the text:

131

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/7-2-geometryreader

VStack {
 Text("Hello, World!")
 GeometryReader(content: { geometry in
 Text("Content")
 .frame(width: geometry.size.width / 2,
 height: geometry.size.height / 2)
 .background(Color.yellow)
 })
 .border(Color.blue, width: 5)
 .padding()
}

When we add the GeometryReader to our view, we can see that it changes the layout significantly. By
default, the GeometryReader is a greedy view, meaning it takes up most of the available space. This can
cause issues when we want to change the size of the view it wraps without affecting other views.

The GeometryReader will place all its child views at the top leading edge. You can use layout
components inside the GeometryReader like HStack and VStack to distribute views.

struct GeometryReaderExampleView: View {
 let spacing: CGFloat = 10

 var body: some View {
 GeometryReader(content: { geometry in
 VStack(spacing: 0) {
 HStack(spacing: 10) {
 Color.yellow
 .frame(width: (geometry.size.width - 10) / 2,
 height: geometry.size.height / 2)
 Color.orange
 .frame(width: (geometry.size.width - 10) / 2,
 height: geometry.size.height / 2)
 }

 Image("dog_3")
 .resizable()
 .scaledToFill()
 .frame(height: geometry.size.height / 2)
 .clipped()
 }
 })

 .border(Color.blue, width: 5)
 .padding()
 }
}

The advantage of GeometryReader is that I can size the views depending on the available space. This
allows me to adjust the layout for different screen sizes and device orientations:

13 2

By using the GeometryReader in combination with other views, we can create dynamic and flexible
layouts. For example, we can create a grid layout by adding multiple views with different images
and adjusting their sizes based on the available space.

GeometryReaderProxy

The GeometryProxy object contains properties such as size, safeAreaInsets, and frame(in:). These
properties allow you to access and manipulate the geometry of the container view.

Here are some commonly used properties:

- geometry.size: The size of the GeometryReader area including the width and height.

- geometry.frame(in: .global): The frame of the container in the global coordinate space. The global
coordinate space refers to the coordinate system of the entire screen. This means that the origin
(0,0) is at the top-left corner of the screen, and the coordinates increase as you move down and to
the right.

- geometry.frame(in: .local): The local coordinate space refers to the coordinate system of the
GeometryReader itself. This means that the origin (0,0) is at the top-left corner of the
GeometryReader and the coordinates increase as you move down and to the right.

- geometry.frame(in: .named(_: String)): The frame in a specific coordinate space.

13 3

As an example let's show the min x and min y coordinates with a Text:

struct GeometryReaderExampleView: View {
 let namespace: String = "namespace"

 var body: some View {
 VStack {
 Text("Hello, World!")

 GeometryReader(content: { geometry in
 VStack {
 Text("origin x \(geometry.frame(in: .named(namespace)).minX)")
 Text("origin y \(geometry.frame(in: .named(namespace)).minY)")
 }
 .frame(width: (geometry.size.width - 10) / 2,
 height: geometry.size.height / 2)
 .background(Color.yellow)
 })
 .border(Color.blue, width: 5)
 .padding()
 }
 .coordinateSpace(name: namespace)
 }
}

By setting the coordinateSpace name around the VStack and asking for the frame in reference to this
coordinate system, I can get the distance from the organ of the VStack to the beginning of the
GeometryReader. In this example the GeometryReader is 16 points in the x direction and 47 points in the
y direction:

13 4

How not to use GeometryReader

However, it’s important to note that the GeometryReader can sometimes cause layout issues, especially
when used in combination with scroll views or lists.

For example, I am placing a GeometryReader inside a ScrollView to size an image:

struct BadGeometryReaderExampleView: View {
 var body: some View {
 ScrollView {
 GeometryReader(content: { geometry in
 Image("dog_3")
 .resizable()
 .scaledToFill()
 .frame(width: geometry.size.width,
 height: geometry.size.width)
 .clipped()
 })

 Image("cat_1")
 .resizable()
 .scaledToFit()
 }
 }
}

ScrollView will use the ideal size of its children in the scroll direction. GeometryReader does not have an
ideal size and the fallback value of 10 points is used for its height. In the below screenshot, you can see
that on the left the first image is very small because of its 10 height. On the right you can see that it looks
much better by using the GeometryReader outside the ScrollView:

13 5

In most cases, when using a ScrollView with a GeometryReader, it’s better to place the GeometryReader
outside the scroll view. This way, the GeometryReader can stretch to fit the available space. The scroll
view is also a greedy view and will fill out the whole GeometryReader content area:

struct GeometryReaderExampleView: View {

 var body: some View {
 GeometryReader(content: { geometry in
 ScrollView {
 Image("dog_3")
 .resizable()
 .scaledToFill()
 .frame(width: geometry.size.width,
 height: geometry.size.width)
 .clipped()

 Image("cat_1")
 .resizable()
 .scaledToFit()
 }
 })
 }
}

Example: GeometryReader for List Row Sizing

We will explore how to create custom layouts in SwiftUI. We will create a list view with images, titles, and
descriptions. The challenge is to make the images scale with the screen size and always occupy one-
third of the width.

13 6

To ensure that the images always occupy 30 percent of the width, I used the GeometryReader and
multiplied its width by 30%. This way, the images dynamically adjust to different screen sizes. You can
test this on smaller screens like an iPhone SE.

struct GeometryReaderInspirationListView: View {
 let inspirations = NatureInspiration.examples()

 var body: some View {
 GeometryReader(content: { geometry in
 ScrollView {
 LazyVStack(alignment: .leading, spacing: 10, content: {
 ForEach(inspirations) { inspiration in

 HStack(alignment: .top, spacing: 10) {
 ImageAspectView(imageName: inspiration.imageName,
 frameAspectRatio: 1,
 cornerRadius: 15)
 .frame(width: geometry.size.width * 0.3)

 VStack(alignment: .leading, spacing: 5) {
 Text(inspiration.name)
 Text(inspiration.description)
 .font(.caption)
 .lineLimit(4)
 }
 .padding(.vertical, 12)
 }
 }
 })
 .padding()
 }
 })
 }
}

The alternative solution is quite similar. Instead of changing the frame, you would set the
containerRelativeFrame in the horizontal direction to scale it accordingly. In the following, I set the size of
the image to 30% of the enclosing frame:

HStack(alignment: .top, spacing: 10) {
 ImageAspectView(imageName: inspiration.imageName,
 frameAspectRatio: 1,
 cornerRadius: 15)
 .containerRelativeFrame(.horizontal) { length, axis in
 length * 0.3
 }

 VStack(alignment: .leading, spacing: 5) {
 Text(inspiration.name)
 Text(inspiration.description)
 .font(.caption)
 }
 .padding(.vertical, 12)
}

13 7

Example: Adaptable Layout with LazyVGrid

Let’s explore an example that demonstrates how to use LazyVGrid in combination with GeometryReader
to create a flexible grid layout. This example will showcase how you can customize the number of
columns based on the available screen width.

 We will use an array of images as our data source for the grid:

struct ImageGalleryView: View {
 let inspirations = NatureInspiration.examples()

 var body: some View {
 GeometryReader(content: { geometry in
 ScrollView {
 LazyVGrid(columns: gridItems(for: geometry.size.width), spacing: 0) {
 ForEach(inspirations) { inspiration in
 ImageAspectView(imageName: inspiration.imageName,
 frameAspectRatio: 1.3)
 }
 }
 }
 })
 }

 func gridItems(for width: CGFloat) -> [GridItem] {
 let numberOfColumns = Int(round(width / 200))
 let item = GridItem(.flexible(minimum: 150, maximum: 350),
 spacing: 0)
 return Array(repeating: item,
 count: numberOfColumns)
 }
}

13 8

In this example, I use GeometryReader to access the available width of the screen. I then pass this width
to the gridItems function, which calculates the number of columns based on the width and returns an
array of GridItem objects. Each GridItem represents a column in the grid and specifies its minimum and
maximum width.

By adjusting the generateGridItems function, you can easily customize the number of columns and the
width range for each column. This flexibility allows you to create dynamic grid layouts that adapt to
different screen sizes and orientations.

On an iPhone 15 in in landscape mode, 4 columns will be shown, whereas for portrait mode only 2
columns are used. This approach also works great for the iPad where a much larger screen offers to
show more grid elements at the same time.

Using GeometryReader together with a Grid layout is a very useful way to create adaptive layouts.

7. 3 E X A M P L E : C U S T O M C O N TA I N E R W I T H
G E O M E T RY R E A D E R

In this section, we will explore how to create a custom layout using SwiftUI’s GeometryReader. We will
focus on a specific challenge: displaying an inspiration detail view that adjusts its layout based on the
device’s orientation or available space.

In landscape mode, we want to change the HStack layout to a VStack. To achieve this, we can use
GeometryReader to check the available space and conditionally display either a VStack or an HStack.

13 9

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/7-2-geometryreader/topics/7-3-example-custom-container-with-geometryreader
https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/7-2-geometryreader/topics/7-3-example-custom-container-with-geometryreader

To make our layout even more adjustable, I am creating a custom layout container that handles the
conditional logic. I can pass in a limit value. If the available space is larger than this limit, a VStack
is used and if it is smaller a HStack:

struct GeometryStack<Content: View>: View {
 let content: () -> Content
 let limit: CGFloat

 init(limit: CGFloat = 400,
 @ViewBuilder content: @escaping () -> Content) {
 self.limit = limit
 self.content = content
 }

 var body: some View {
 GeometryReader(content: { geometry in
 if geometry.size.width > limit {
 ScrollView {
 HStack(alignment: .center,
 spacing: 10,
 content: content)
 }
 } else {
 ScrollView {
 VStack(alignment: .center,
 spacing: 10,
 content: content)
 }
 }
 })
 }
}

Additionally, I added scroll views around both the HStack and VStack to make it even more adaptable to
different screen sizes.

I can then use this container around the views that I want to use for the detail view, which is an image and
2 text views:

struct InspirationDetailView: View {

 let inspiration: NatureInspiration

 var body: some View {
 GeometryStack {
 ImageAspectView(imageName: inspiration.imageName,
 frameAspectRatio: 1)

 VStack(alignment: .leading, spacing: 5) {
 Text(inspiration.name)
 .font(.title)
 Text(inspiration.description)
 }
 .padding(12)
 }
 .edgesIgnoringSafeArea([.bottom, .leading])
 }
}

14 0

7. 4 P R E F E R E N C E K E YS

In this section, we will explore the concept of preference keys and preference values, which are useful for
passing information within the view hierarchy. There are two directions in which you can pass values:

• top to bottom, where values are injected from the top and passed down to child and sub-child view
which is passed in the Environment

• and the opposite direction, where a child view wants to pass a value to its parent and further up the
view hierarchy. This is done with PreferenceKeys

Example: Navigation Title

Let’s start by looking at an example where preference keys are used. We will use the NavigationStack and
NavigationLink to demonstrate this. Imagine we have a list of inspirations, and when we tap on one of
them, we navigate to a detail view. I also want to display a navigation title for the inspirations:

struct PreferenceExampleView: View {

 let inspirations = NatureInspiration.examples()

 var body: some View {
 NavigationStack {
 ScrollView {
 LazyVStack(alignment: .leading, spacing: 10, content: {
 ForEach(inspirations) { inspiration in
 NavigationLink {
 InspirationDetailView(inspiration: inspiration)
 .navigationTitle(inspiration.name)
 } label: {
 InspirationRow(inspiration: inspiration)
 }.buttonStyle(.plain)
 }

141

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/7-4-preferencekeys

 })
 .padding()
 }
 .navigationTitle("Inspirations")
 }
 }
}

To show a title in the navigation bar, you can use the navigationTitle modifier, which needs to be added
inside the NavigationStack. If you would add it outside like so:

NavigationStack {
 …
}
.navigationTitle("Inspirations")

the navigation title would not be shown. This is because the navigation stack and navigation views
propagate the title from inside the views to the parent in the hierarchy. This approach allows for multiple
views to contribute to the navigation title, with the innermost title taking precedence.

By using PreferenceKeys to pass the navigation title, you can add multiple different values from within
your view hierarchy. When I have a navigation link open the preference value from that view is passed and
used for the navigation title. Whereas when I show the root view, the navigation title from that view is
used.

To achieve this kind of value propagation from child to parent views, we can use preference keys:

14 2

Example: Custom Container with PreferenceKey

Let’s dive deeper into how Preferences works by creating a similar container view. First, we define our
own preference key, which in this case is a string preference key to pass string values.

struct StringPreferenceKey: PreferenceKey {
 static var defaultValue: String? = nil

 static func reduce(value: inout String?, nextValue: () -> String?) {
 guard let nextValue = nextValue() else { return }
 value = nextValue
 }
}

The purpose of the reduce function is to determine how to combine these values. You have the flexibility
to choose how the values are accumulated, whether you want to keep all of them, only keep the first or
last value, or perform any other custom logic.

In the example we discussed earlier, the reduce function simply replaces the current value with the next
value. This means that as new values are encountered, the previous value is overwritten, and only the
latest value is stored.

It’s important to note that the reduce function is called for each view that contributes a value to the
preference key. SwiftUI automatically handles the accumulation process, iterating through the views and
passing the values to the reduce function.

If no value for the given PreferenceKey is passed from a child view, SwiftUI will use the value you specify
by the defaultValue property. In this example, we will have a nil value.

You can then pass a value with preferences with the preference modifier:

Text("Container with Preferences”)
 .preference(key: StringPreferenceKey.self, value: “My Title”)

To make it more convenient, we can extend the View type with a function that handles the preference key
and value.

extension View {
 func myContainerTitle(_ title: String) -> some View {
 self.preference(key: StringPreferenceKey.self, value: title)
 }
}

14 3

In the container view, we can access the preference value using the onPreferenceChange modifier. We
can then store this value in a state property and use it within the view.

struct PreferenceContainerView<Content> : View where Content : View {

 @State private var title: String? = nil
 let content: () -> Content

 init(@ViewBuilder content: @escaping () -> Content) {
 self.content = content
 }

 var body: some View {
 ZStack {
 RoundedRectangle(cornerRadius: 25.0)
 .fill(Color.cyan.gradient)

 VStack(alignment: .leading,
 spacing: 10) {

 if let title {
 Text(title)
 .font(.title)
 .bold()
 }

 content()
 }
 .padding()
 }
 .aspectRatio(1, contentMode: .fit)
 .onPreferenceChange(StringPreferenceKey.self, perform: { value in
 self.title = value
 })
 }
}

By using preference keys, we can easily pass values from child views to their parent views and further up
the view hierarchy. This approach allows for flexible customization and dynamic updates based on the
values passed.

PreferenceContainerView {
 Text("First Text")
 .myContainerTitle("First")

 HStack {
 Text("Container with Preferences")
 .myContainerTitle("Second title")

 VStack {
 Text("Child")
 .myContainerTitle("Child title”)
 }
 }
}

14 4

While preference keys may seem a bit complex at first, understanding how they work can greatly
enhance your SwiftUI layout skills. It’s important to remember to place the necessary modifiers and
values in the correct positions to ensure the desired behavior. With preference keys, you have the
advantage of multiple positions to attach and pass values, providing a powerful tool for creating custom
layouts.

7. 5 B O U N D S M E A S U R E M E N T W I T H P R E F E R E N C E K E YS A N D
G E O M E T RY R E A D E R

In this section, we will focus on measuring the bounds of views using GeometryReader and
PreferenceKeys. We want to know the size of a specific view and display it in another view without
affecting the layout.

To measure the size of this view, we can leverage the fact that modifiers like background and overlay do
not influence the size of the views they are applied to. By using the overlay modifier with a
GeometryReader, we can obtain the size of the view:

Image(.candies)
 .resizable()
 .scaledToFit()
 .frame(width: 350)
 .overlay {
 GeometryReader(content: { geometry in
 Text("Image size: \(geometry.size.width)")
 .padding()
 .background(.thinMaterial)
 .padding()
 })
 }

I have the size of the view inside the overlays secondary child view. To pass this size value up the view
hierarchy, I will use PreferenceKeys.

14 5

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/7-5-bounds-measurement-with-preferencekeys-and-geometryreader
https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/7-5-bounds-measurement-with-preferencekeys-and-geometryreader

First, we need to define a preference key. Let’s call it BoundsPreferenceKey:

struct BoundsPreferenceKey: PreferenceKey {
 static var defaultValue: CGRect = .zero

 static func reduce(value: inout CGRect, nextValue: () -> CGRect) {
 value = nextValue()
 }
}

Next, I am creating a view modifier that holds the logic with the GeometryReader in the background:

struct BoundsMeasurment: ViewModifier {
 @Binding var bounds: CGRect
 let namespace: String

 func body(content: Content) -> some View {
 content
 .background {
 GeometryReader(content: { geometry in
 Color.clear
 // pass value from the child view:
 .preference(key: BoundsPreferenceKey.self,
 value: geometry.frame(in: .named(namespace)))
 })
 }
 // access value from preferences
 .onPreferenceChange(BoundsPreferenceKey.self, perform: { value in
 self.bounds = value
 })
 }
}

I can inject this size of the GeometryReader as a preference. We’ll use the onPreferenceChange modifier
to capture the value and store it in a state variable.

By encapsulating this functionality in a view modifier, we can make it more reusable:

extension View {
 func measureBounds(bounds: Binding<CGRect>,
 namespace: String) -> some View {
 self.modifier(BoundsMeasurment(bounds: bounds,
 namespace: namespace))
 }
}

Now, we can use the MeasureBounds modifier to measure the bounds of any view:

struct BoundsMeasurementExampleView: View {

 @State private var bounds = CGRect.zero

14 6

 var body: some View {
 VStack {
 Image(.candies)
 .resizable()
 .scaledToFit()
 .frame(width: 350)
 .measureBounds(bounds: $bounds, namespace: "mynamespace")

 Text("size: \(bounds.width)")
 }
 }
}

This approach allows us to measure the bounds of a view without affecting the layout and pass the
information up the view hierarchy for further use.

Example: ScrollView Animation

I will use the size measurement approach from the previous section to add animations to a scroll view. I
want to fade out the view that is leaving the scroll area on the top.

struct ScrollOffsetExampleView: View {
 let inspirations = NatureInspiration.examples()
 let namespace = "scrollviewspace"

 var body: some View {
 ScrollView {
 LazyVStack(spacing: 0) {
 ForEach(inspirations) { inspiration in
 FadeOutImageView(name: inspiration.imageName,
 namespace: namespace)
 }
 }
 }.coordinateSpace(name: namespace)
 }
}

14 7

I create a custom sub-view for each image in the scroll view and use the measureBounds modifier to get
access to the frame. I want to know the current scroll position of each image in the scroll view. The frame
minimum Y position is the top position in the coordinate space of the scroll view. I had to add a
coordinateSpace modifier around the ScrollView and pass a name. The same name is used in the
namespace of GeometryReader to get the coordinates in reference to the scroll view.

This allows me to use the frame minimum Y position to change the opacity of the image. If the image
position is negative, the image is no longer inside the scrollview and the opacity is set to 0.

struct FadeOutImageView: View {
 let name: String
 @State private var frame = CGRect.zero
 let namespace: String

 var opacity: CGFloat {
 guard frame.minY < 0 else { return 1 }

 let offset = abs(frame)
 let min = min(offset, frame.height)

 return 1 - min / frame.height
 }

 var body: some View {
 Image(name)
 .resizable()
 .scaledToFit()
 .opacity(opacity)
 .measureBounds(bounds: $$frame, namespace: namespace)
 }
}

Note that with iOS 17, you can use scrollTransition and visualEffect to achieve the same behavior with
a much easier approach.

14 8

7. 6 L AYO U T P R O T O C O L

In iOS 16, the Layout Protocol was introduced. This means that you now have the ability to create your
own layout containers and components, similar to the existing VStack and HStack. This opens up a world
of possibilities, from basic layouts to more complex and sophisticated ones.

In many cases, you can replace GeometryReader, which has its limitations, with the new layout protocol.
However, be aware that this approach is more complex as it requires you to manually layout and size your
views.

In order to dive into this topic, let’s revisit what we discussed in the layout system section, where we
explored how views are sized. When working with the layout protocol, we get a glimpse behind the
scenes of the layout process in SwiftUI. There are three main steps involved:

• First, the parent view receives a size from its parent. If it’s the only view, it will take up the entire screen
and pass down a proposed size to its children.

• The child view then decides how large it wants to be and passes that information back up to the
parent.

• Once the parent knows the size of its children, it can also pass its own values back to its parent.

• Finally, after all the sizes have been determined, the views are positioned using alignments and
alignment directions.

Example: Recreating HStack

To demonstrate the process of creating a custom layout, let’s take a look at an example where we
recreate an HStack. It would achieve the following layout with 2 small text views:

HStack(spacing: 10) {
 Text("First")
 .padding()
 .background(Color.yellow)
 Text("Second")
 .padding()
 .background(Color.cyan)
}

We’ll start by defining a struct called CustomHStack that conforms to the layout protocol. This protocol
has two requirements: sizeThatFits and placeSubviews.

struct CustomHStack: Layout {

 func sizeThatFits(proposal: ProposedViewSize,
 subviews: Subviews,
 cache: inout ()) -> CGSize {
 // return the ideal size of this layout container
 }

14 9

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/7-6-layout-protocol

 func placeSubviews(in bounds: CGRect,
 proposal: ProposedViewSize,
 subviews: Subviews,
 cache: inout ()) {
 // position views
 }
}

The sizeThatFits function is called to determine how large the container wants to be. We need to
consider the views inside the container, which is why we receive the subviews and the proposed size
from the parent. In this function, we can calculate the ideal size of our container CustomHStack.

The placeSubviews function is responsible for positioning the subviews within the container. For
example, you can iterate over all subviews and use call place(at: CGPoint, proposal: ProposedViewSize).

How to calculate the container Size

First, you need to return a size for your container. If I don't have any subview, I am returning a zero size
for my container. If you want to implement a greedy container and take all the space that is been
offered, you can call:

func sizeThatFits(proposal: ProposedViewSize,
 subviews: Subviews,
 cache: inout ()) -> CGSize {
 guard !subviews.isEmpty else { return .zero }

 return proposal.replacingUnspecifiedDimensions()
}

Be aware that if you add fixedSize or embed your layout stack inside a ScrollView the proposed size will
have nil values, that are referred to as unspecified. By calling replacingUnspecifiedDimensions these
values are replaced by 10 points which is the default value. From the definition of this function you can
see the 10 points:

15 0

 @inlinable public func replacingUnspecifiedDimensions(by size: CGSize =
CGSize(width: 10, height: 10)) -> CGSize

In this example, I want to create a conservative container that only asks for the space it needs to
fit its child views. I will write a separate function to calculate the intrinsic size:

func sizeThatFits(proposal: ProposedViewSize,
 subviews: Subviews,
 cache: inout ()) -> CGSize {
 guard !subviews.isEmpty else { return .zero }

 return intrinsicSize(subviews: subviews, for: proposal)
}

func fullIntrinsicSize(subviews: Subviews,
 for proposal: ProposedViewSize) -> CGSize {
 let viewSizes = calcualteSizes(subviews: subviews,
 for: proposal)
 let height = viewSizes.max { $0.height < $1.height}?.height ?? 0
 let width = viewSizes.reduce(0) { $0 + $1.width}

 return CGSize(width: width + totalSpacing, height: height)
}

I am using the size of the individual subviews. The height of an HStack is decided by the largest child
view. The width of the Hstack is a sum of the width of all child views plus the total spacing.

The tricky part is actually to decide how large each child view should be. As an example, I am using the
ideal size of each child view.

func calculateSizes(subviews: Subviews,
 for proposal: ProposedViewSize) -> [CGSize] {
 var viewSizes = [CGSize]()

 for subview in subviews {
 let idealSize = subview.dimensions(in: .unspecified)
 viewSizes.append(CGSize(width: idealSize.width,
 height: idealSize.height))
 }
 return viewSizes
}

151

This approach replicates an HStack with small views inside. However, when the text views get larger, the
container will size too big and overflow the screen. In order to replicate the size distribution, you need to
consider how each subview will fit into the available space.

Each subview has a dimensions function that you can call to get certain size behaviours. You can get the
maximum, minimum, and ideal sizes:

let maxSize = subview.dimensions(in: .infinity)
 // same as subview.sizeThatFits(.infinity)
let idealSize = subview.dimensions(in: .unspecified)

 // same as subview.sizeThatFits(.unspecified)
let minSize = subview.dimensions(in: .zero)
 // same as subview.sizeThatFits(.zero)

The dimensions function will return a ViewDimensions type. Wheres the sieThatFits function returns
CGSize.

You can also ask for the size that fits in a specified proposed size. Let’s say I have a larger multiline
text and I want to know how it fits in the container available space:

let sizeThatFits = subview.sizeThatFits(.init(width: proposal.width,
 height: proposal.height))

 // same as subview.dimensions(in: ProposedViewSize(width: proposal.width,
 height: proposal.height))

A text view would return the same size for all 3 proposals. A Color view would return 0 for the minimum,
10 for the ideal, and inf for the maximum size. You can call these functions multiple times for each
subview to determine its sizing behavior e.g. greedy view vs fixed size view.

In this case, I would propose each child view the full available space, which would lead again to the
container being too big. Instead, I want to offer each subview a portion of the available space:

Color Text .frame(min, ideal, max)
min size 0 e.g. 68 Frame minium value
ideal size 10 e.g. 68 Frames ideal value
max size Inf e.g. 68 Frames max value
size that fits Returns proposes size Returns size that fits in

proposed size
Minimum of proposed size and
frame ideal size

15 2

func calculateSizes(subviews: Subviews,
 for proposal: ProposedViewSize) -> [CGSize] {
 let availableWidth = proposal.width ?? 0 - totalSpacing(subviews: subviews)
 let individualWidth = availableWidth / CGFloat(subviews.count)
 let individualProposal = ProposedViewSize(width: individualWidth,
 height: proposal.height)

 var viewSizes = [ViewSizeResult]()
 for subview in subviews {
 let sizeThatFits = subview.sizeThatFits(individualProposal)
 viewSizes.append(sizeThatFits)
 }
 return viewSizes
}

I proposed each subview an equal proportion of the available space. The resulting layout will fit on the
screen but it will not fill the whole available space:

CustomHStack(spacing: 10) {
 Text("First")
 .padding()
 .background(Color.orange)
 Text("Second")
 .padding()
 .background(Color.red)
 Text("This is a very long text
 that does not fit")
 .padding()
 .background(Color.green)
}

To further optimize the layout for space, you can add an additional round of redistributing space to
subviews that want more space. You can find out if a view fits by comparing its sizes:

let idealSize = subview.sizeThatFits(.unspecified)
let sizeThatFits = subview.sizeThatFits(individualProposal)

let doesFit = idealSize == sizeThatFits

I would then filter the subviews that do not fit and redistribute the remains space:

struct ViewSizeResult {
 let index: Int
 var size: CGSize
 var isFit: Bool
}

func calculateSizes(subviews: Subviews,
 for proposal: ProposedViewSize) -> [CGSize] {
 let availableWidth = proposal.width ?? 0 - totalSpacing(subviews: subviews)
 let individualWidth = availableWidth / CGFloat(subviews.count)
 let individualProposal = ProposedViewSize(width: individualWidth,
 height: proposal.height)
 var viewSizes = [ViewSizeResult]()
 for (index, subview) in subviews.enumerated() {
 let idealSize = subview.sizeThatFits(.unspecified)
 let sizeThatFits = subview.sizeThatFits(individualProposal)

15 3

 let doesFit = idealSize == sizeThatFits
 viewSizes.append(ViewSizeResult(index: index,
 size: doesFit ? sizeThatFits : .zero,
 isFit: doesFit))
 }

 let widthThatIsUsedByFitViews = viewSizes.reduce(0) { $0 + $1.size.width }
 let remainingWidth = availableWidth - widthThatIsUsedByFitViews
 let countRemainingViews = viewSizes.filter { !$0.isFit }.count
 let remainingWidthOffering = remainingWidth / CGFloat(countRemainingViews)
 let remainingOffering = ProposedViewSize(width: remainingWidthOffering,
 height: proposal.height)

 for viewSize in viewSizes {
 if !viewSize.isFit {
 let size = subviews[viewSize.index].sizeThatFits(remainingOffering)
 viewSizes[viewSize.index].size = size
 }
 }

 return viewSizes.map { $0.size }
}

In the below example, my custom layout behaves very similarly to the system HStack. I only added one
more round of space redistribution. But you can imagine that you can add a lot more complexity if you
use more subviews in different situations.

How to position the subviews inside the Layout container

In order to position the views, you have to use the placeSubviews function and iterate over all subviews.
Each subview has a function place(at:) that you can call to position the view. Additionally you pass in a
proposed size to this subview:

func placeSubviews(in bounds: CGRect,
 proposal: ProposedViewSize,
 subviews: Subviews,
 cache: inout ()) {

15 4

 guard !subviews.isEmpty else { return }

 var x = bounds.minX
 let viewSizes = calculateSizes(subviews: subviews,
 for: proposal)
 for (index, subview) in subviews.enumerated() {
 let size = viewSizes[index]
 subview.place(at: CGPoint(x: x + size.width / 2,
 y: bounds.midY),
 anchor: .center,
 proposal: ProposedViewSize(width: size.width,
 height: size.height))
 x += size.width + spacing

 }
}

The position needs to be given in absolute position of the screen. You can get the start position of your
Layout container by using the bounds minimum X and Y coordinates.

In the example of an HStack I would move each view to the next horizontal direction. In the above
example I aligned the views in the HStack with a center alignment. But you can also pass in an alignment
property to your Layout container that you use in the placeSubviews function:

struct CustomHStack: Layout {

 let alignment: VerticalAlignment
 let spacing: CGFloat

 …

}

15 5

7.7 Layout Example: Equal Width HStack and VStack

In this section, I will show you a custom layout that creates a stack with equal-sized child views.
This example is from WWDC 2023, where they introduced layouts that ensure all child views have
the same size in either height or width.

EqualWidthVStack() {
 Button(action: {

 }, label: {
 Text("First")
 })

 Button(action: {

 }, label: {
 Text("Second")
 })

 Button(action: {

 }, label: {
 Text("Third Button")
 })
}
.buttonStyle(CustomButtonStyle())

The EqualWidthVStack and EqualWidthHStack calculate their size by using the size of the largest
subview. For example, the horizontal stack uses the max subview size for its size:

func maxSize(subviews: Subviews) -> CGSize {
 let subviewSizes = subviews.map { $0.sizeThatFits(.unspecified) }
 let maxSize: CGSize = subviewSizes.reduce(.zero) { currentMax, subviewSize in
 CGSize(
 width: max(currentMax.width, subviewSize.width),
 height: max(currentMax.height, subviewSize.height))
 }

 return maxSize
}

func fullIntrinsicSize(subviews: Subviews) -> CGSize {
 let maxSize = maxSize(subviews: subviews)
 let totalSpacing = totalSpacing(subviews: subviews)

 return CGSize(width: maxSize.width * CGFloat(subviews.count) + totalSpacing,
 height: maxSize.height)
}

This layout does not consider the proposed size it gets from its parent. If you use the horizontal stack,
this can lead to the layout being larger than the screen size. This behavior is intentional and allows us to
define different ways of using this layout.

By using ViewThatFits, you can switch between these two layouts. If the horizontal layout does not
fit, the smaller vertical version will be used:

15 6

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/7-6-layout-protocol/topics/7-7-layout-example-equal-width-hstack-and-vstack

struct EqualSizeButtonExampleView: View {

 var body: some View {
 ViewThatFits {
 EqualWidthHStack() {
 buttons
 }
 .buttonStyle(CustomButtonStyle())

 EqualWidthVStack() {
 buttons
 }
 .buttonStyle(CustomButtonStyle())
 }
 .padding()
 }

 @ViewBuilder
 var buttons: some View {
 Button(action: {

 }, label: {
 Text("First")
 })

 Button(action: {

 }, label: {
 Text("Second")
 })

 Button(action: {

 }, label: {
 Text("Third Button")
 })
 }
}

7.8 Layout Example: Flow Layout

In this section, we will explore the flow layout, which is a highly requested feature in SwiftUI. You
can accomplish a flow layout with the new Layout Protocol. This allows you to create a collection
view-like layout where items flow horizontally and wrap to the next line when necessary.

In the following example, I am creating a picker view where you can select your favorite pets. Inside the
FlowLayout container, I am using a ForEach to iterate over all the available options:

struct FlowLayoutExampleView: View {

 let pets = ["cat", "dog", "fish", "horse", "snack", "bird", "rat"]
 @State private var selection = Set<String>()

 var body: some View {
 VStack(alignment: .leading) {
 Text("Select a pet")
 .bold()
 FlowLayout(alignment: .leading, spacing: 10) {

157

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/7-6-layout-protocol/topics/7-8-layout-example-flow-layout

 ForEach(pets, id: \.self) { pet in
 Text(pet)
 .foregroundStyle(.white)
 .padding(5)
 .background(color(for: pet))
 .cornerRadius(3.0)
 .onTapGesture {
 if selection.contains(pet) {
 selection.remove(pet)
 } else {
 selection.insert(pet)
 }
 }
 }
 }
 }
 }

 func color(for pet: String) -> Color {
 selection.contains(pet) ? Color.indigo : Color.gray
 }
}

This layout uses the ideal size of each element:

let idealSize = subview.sizeThatFits(.unspecified

It then uses this size and the available space to distribute all subviews over multiple rows.

Note that you should not use this layout for large collection views because it is not lazily created.
The Layout Protocol is suitable for small and precise sizing and positioning of views.

15 8

7.9 Layout Example: Radial Layout

Another example from the WWDC2023 is the following radial layout. As an example, I am using it to show
the voting results for the favorite pet. The pet with the highest vote is shown on top. This layout only
works for 3 items in the layout:

MyRadialLayout() {
 ForEach(pets) { pet in
 PetBubbleView(pet: pet, allPets: pets)

 }
}
.background(Circle().stroke(Color.indigo).padding(50))
.aspectRatio(1, contentMode: .fit)

The layout container needs to know the rating for each of the 3 elements. You can pass values from your
subview to your layout by using LayoutValueKey which is a key that the layout uses to read the rank for a
subview:

private struct Rank: LayoutValueKey {
 static let defaultValue: Int = 1
}

From the subview you can pass the layout value. This is a convenience view modifier that handles this:

15 9

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/7-6-layout-protocol/topics/7-9-layout-example-radial-layout

extension View {
 /// Sets the rank layout value on a view.
 func rank(_ value: Int) -> some View {
 layoutValue(key: Rank.self, value: value)
 }

}

In the subview, you can add that rank value for each pet:

struct PetBubbleView: View {
 let pet: Pet
 let allPets: [Pet]

 var body: some View {
 Text(emoji(for:pet))
 .font(.system(size: 70))
 .padding()
 .background(Circle().fill(.indigo)
 .shadow(radius: 5))
 .rank(rank(pet))
 }

 func emoji(for pet: Pet) -> String {
 switch pet.type {
 case .cat: "😸 "
 case .dog: "🐶 "
 case .fish: "🐠 "
 case .horse: "🐴 "
 }
 }

 func rank(_ pet: Pet) -> Int {
 allPets.reduce(1) { $0 + (($1.votes > pet.votes) ? 1 : 0) }
 }
}

The RadialLayout container can then access these values from each subview:

func placeSubviews(in bounds: CGRect,
 proposal: ProposedViewSize,
 subviews: Subviews,
 cache: inout Void) {

 let ranks = subviews.map { subview in
 subview[Rank.self]
 }

 for (index, subview) in subviews.enumerated() {
 // use ranks[index] to place subview
 }
}

16 0

By creating your own layout keys and using them in the layout, you can influence the arrangement of
views in unique ways. The radial layout is just one example of the possibilities that custom layouts offer.

7.10 Custom Layout with Layout Priority

In this section, we will explore a different way of using layout priority in SwiftUI. To illustrate this concept,
let’s consider an example of an HStack with 3 images:

HStack(spacing: 1) {
 ImageFillView(imageName: "mountain")
 ImageFillView(imageName: "sky")
 ImageFillView(imageName: "leaves")
}
.frame(height: 150)

struct ImageFillView: View {
 let imageName: String
 var body: some View {
 Color.cyan
 .overlay {
 Image(imageName)
 .resizable()
 .aspectRatio(nil, contentMode: .fill)
 }.clipped()
 }
}

All images have the same sizing. If you want to give one image more width, you could try to use layout
priority:

HStack(spacing: 1) {
 ImageFillView(imageName: “mountain")
 .layoutPriority(0.25)
 ImageFillView(imageName: “sky")
 .layoutPriority(0.25)
 ImageFillView(imageName: "leaves")
 .layoutPriority(0.5)
}
.frame(height: 150)

In this case, all the space is proposed first to the view with the highest layout priority. The image will take
all the offered space and you can only see this one view.

Instead, I want to have a layout container that uses the layout priority as a percentage of the available
width:

PriorityWidthHStack(spacing: 1) {
 ImageFillView(imageName: "mountain")
 .layoutPriority(0.3)

 ImageFillView(imageName: "sky")
 .layoutPriority(0.5)

161

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/7-6-layout-protocol/topics/7-10-custom-layout-with-layout-priority

 ImageFillView(imageName: "leaves")
 .layoutPriority(0.2)
}
.frame(height: 150)

Each subview has a priority property that I use together with the available space to calculate the
subviews width:

struct PriorityWidthHStack: Layout {

 …

 func placeSubviews(in bounds: CGRect,
 proposal: ProposedViewSize,
 subviews: Subviews,
 cache: inout Void) {

 guard !subviews.isEmpty else { return }
 guard let containerWidth = proposal.width else { return }

 let totalSpacing = totalSpacing(subviews: subviews)
 let availableWidth = containerWidth - totalSpacing

 var x = bounds.minX

 for (index, subview) in subviews.enumerated() {
 let viewWidth = subview.priority * availableWidth
 let viewSize = subview.sizeThatFits(.init(width: viewWidth,
 height: bounds.height))
 let placementProposal = ProposedViewSize(width: viewWidth,
 height: containerHeight)
 let anchorPoint = anchorPoint(in: bounds,
 availableViewWidth: viewWidth,
 intrinsicViewSize: viewSize,
 x: &x)
 subviews[index].place(
 at: anchorPoint,
 anchor: .center,
 proposal: placementProposal)
 x += viewWidth + spacing
 }
 }

}

However, it’s worth noting that this approach may lead to confusion when switching between different
stacks. Alternatively, you could create another LayoutValueKey, similar to the radial example, where a
rank was added. This approach would provide a clearer understanding of the layout priorities.

Alternative Solution: containerRelativeFrame

An easier solution for this specific problem would have been to use the new containerRelativeFrame
which is available for iOs 17:

HStack(spacing: 1) {

16 2

 ImageFillView(imageName: "mountain")
 .containerRelativeFrame(.horizontal) { length, axis in
 length * 0.3
 }

 ImageFillView(imageName: "sky")
 .containerRelativeFrame(.horizontal) { length, axis in
 length * 0.5
 }

 ImageFillView(imageName: "leaves")
 }
 .frame(height: 150)

Note that Xcode gave me an error when I added containerRelativeFrame to all 3 images.

7.11 Custom Layout for Image Gallery

In this section, we will explore how to create a custom image gallery view using SwiftUI. The goal is to
have multiple images with different aspect ratios displayed on the same row, all with the same height and
fitting perfectly within the row.

To achieve this, we can start by adjusting and setting specific frame width values for each image to
ensure equal scaling. However, a better approach is to use an HStack that automatically distributes the
space without the need for manual adjustments.

HStack(spacing: 0) {
 Image("beach-view")
 .resizable()
 .scaledToFit()
 .frame(width: 78)
 Image("bridge")
 .resizable()
 .scaledToFit()
 .frame(width: 210)
 Image("dog_2")
 .resizable()
 .scaledToFit()
 .frame(width: 105)
}

16 3

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/7-6-layout-protocol/topics/7-11-custom-layout-for-image-gallery

In the following screenshots, you can see that a fixed frame size for the images (top row) does not adapt
well to different screen sizes. The second image row adjusts the row height and individual image size to
fit on on row. This depends solely on the aspect ratios of the images and the screen width:

The container view that accomplishes this adaptive layout does not rely on fixed frame sizes:

ImageCollectionHStack(spacing: 0) {
 Image("beach-view")
 .resizable()
 .scaledToFit()
 Image("bridge")
 .resizable()
 .scaledToFit()
 Image("dog_2")
 .resizable()
 .scaledToFit()
}

This special layout container uses the aspect ratios of the images to determine the size and position of
the images:

struct ImageCollectionHStack: Layout {

 let spacing: CGFloat

 func sizeThatFits(proposal: ProposedViewSize,
 subviews: Subviews,
 cache: inout ()) -> CGSize {
 let width = proposal.width ?? 0
 let height = calculateHeight(proposal: proposal,
 subviews: subviews)

 return CGSize(width: width, height: height)
 }

 func calculateHeight(proposal: ProposedViewSize,
 subviews: Subviews) -> CGFloat {
 let subViewSizes = subviews.map { $0.sizeThatFits(.unspecified) }
 let subViewAspectRatios = subViewSizes.map { $0.width / $0.height }
 let sumSubViewAspectRatios = subViewAspectRatios.reduce(0) { $0 + $1 }

 let totalSpacing = spacing * CGFloat(subviews.count - 1)
 let availablWidth = proposal.width ?? 0

 return (availablWidth - totalSpacing) / sumSubViewAspectRatios
 }

 func placeSubviews(in bounds: CGRect,
 proposal: ProposedViewSize,
 subviews: Subviews,
 cache: inout ()) {
 guard !subviews.isEmpty else { return }
 let subviewHeight = calculateHeight(proposal: proposal,
 subviews: subviews)
 var x = bounds.minX

 for (index, subView) in subviews.enumerated() {

16 4

 let viewSize = subView.sizeThatFits(.unspecified)
 let subviewWidth = subviewHeight * viewSize.width / viewSize.height
 let placementProposal = ProposedViewSize(width: subviewWidth,
 height: subviewHeight)

 subviews[index].place(at: CGPoint(x: x + subviewWidth / 2,
 y: bounds.midY),
 anchor: .center,
 proposal: placementProposal)
 x += subviewWidth + spacing
 }
 }
}

To see the full potential of this custom layout, let’s create a ScrollView with a LazyVStack and set the
spacing to one. Within this view, we can display the image collection using a ForEach loop. For simplicity,
we can create an array with two dimensions, representing the number of images in each row:

struct ImageCollectionView: View {
 let images = [["bridge", "green-tree-sun"],
 ["beach-view", "beach"],
 ["leaves", "trees-moos", "tree-sun"],
 ["mont-blanc"]]

 let spacing: CGFloat = 5
 var body: some View {
 ScrollView {
 LazyVStack(spacing: spacing) {
 ForEach(images, id: \.self) { row in
 ImageCollectionHStack(spacing: spacing) {
 ForEach(row, id: \.self) { name in
 Image(name)
 .resizable()
 .scaledToFit()
 }
 }
 }
 }
 }
 }
}

Example: Image Gallery View with Async Loading

However, when using async images or images downloaded from a server, we may not have the images
available during layout. In this case, we only need the aspect ratio of each image to make the layout
work. Similar to the radial layout example, we can use a custom layout value key called aspectRatioKey
to calculate the layout.

private struct ImageAspectRatio: LayoutValueKey {
 static let defaultValue: CGFloat = 1
}

extension View {
 func imageAspectRatio(_ value: CGFloat) -> some View {
 layoutValue(key: ImageAspectRatio.self, value: value)
 }

16 5

}

I can then modify the Layout to use the aspect ratio from the subviews:

struct AspectRatioImageCollectionHStack: Layout {
 …

 func calculateHeight(proposal: ProposedViewSize,
 subviews: Subviews) -> CGFloat {
 let subViewSizes = subviews.map { $0.sizeThatFits(.unspecified) }

 let subViewAspectRatios = subviews.map { subview in
 subview[ImageAspectRatio.self]
 }

 let sumSubViewAspectRatios = subViewAspectRatios.reduce(0) { $0 + $1 }
 let totalSpacing = spacing * CGFloat(subviews.count - 1)
 let availablWidth = proposal.width ?? 0

 return (availablWidth - totalSpacing) / sumSubViewAspectRatios
 }
}

The data that is loaded from the server has information about the width and height of each image. This
gives me the aspect ratio for the image layout:

struct PicsumPhoto: Codable, Identifiable, Hashable {
 let id: String
 let author: String
 let width: CGFloat
 let height: CGFloat
 let downloadUrl: String

 var aspectRatio: CGFloat {
 width / height
 }

}

The view model to load the image data returns an array of PicsumPhoto. To prepare for a 2 dimensional
grid I am reordering these photos into a nested array:

class PicsumPhotoLoader: ObservableObject {

 @Published var photos: [PicsumPhoto] = [] {
 didSet {
 reorder()
 }
 }

 @Published var photoRows: [[PicsumPhoto]] = []

 func loadImage() {
 …
 }

16 6

}

For the image gallery view, I am using a ScrollView and LayzVStack. A ForEach iterates through all photos
rows. For each row I am using the AspectRatioImageCollectionHStack that generates the layout with the
help of the image aspect ratio passed as LayoutValueKeys:

struct AsyncImageCollectionView: View {

 @StateObject var photoLoader = PicsumPhotoLoader()
 let spacing: CGFloat = 1

 var body: some View {
 ScrollView {
 LazyVStack(spacing: spacing) {
 ForEach(photoLoader.photoRows, id: \.self) { row in

 AspectRatioImageCollectionHStack(spacing: spacing) {
 ForEach(row) { photo in
 AspectRatioSizedAsyncImage(photo: photo)
 .imageAspectRatio(photo.aspectRatio)
 }
 }

 }
 }
 }
 }
}

fileprivate struct AspectRatioSizedAsyncImage: View {

 let photo: PicsumPhoto
 let baseURLString = "https://picsum.photos/id/"
 @Environment(\.displayScale) var scale

 var body: some View {
 GeometryReader(content: { geometry in
 AsyncImage(url: url(in: geometry.size.width),
 scale: scale,
 transaction: .init(animation: .bouncy)) { phase in
 switch phase {
 case .empty:
 ZStack {
 Color.gray
 ProgressView()
 }
 case .success(let image):
 image.resizable()
 .scaledToFit()
 case .failure(let error):
 Text(error.localizedDescription)
 // use placeholder for production app
 @unknown default:
 Text("default")
 }
 }
 })
 .imageAspectRatio(photo.aspectRatio)
 }

 func url(in width: CGFloat) -> URL? {

16 7

 let imageWidth = width * scale
 let imageHeight = imageWidth / photo.aspectRatio
 let urlString = "\(baseURLString)\(photo.id)/\(Int(imageWidth))/\
(Int(imageHeight))"
 return URL(string: urlString)
 }
}

By using a LazyVStack, the rows are created dynamically as needed. This ensures efficient memory
usage and smooth scrolling. The layout is properly sized, and images are loaded to the appropriate size,
resulting in a seamless user experience. Each row uses a custom layout that is created row by row.

16 8

8 . DY N A M I C DATA

8 .1 F O R E A C H

In this section, we’ll dive into dynamic data in SwiftUI. We’ll explore the ForEach container, which allows
us to create a loop for a collection and show a view for each element in the collection. This is particularly
useful when working with large data sets, such as arrays or dictionaries.

Arrays of Strings

Let’s start with a simple example using an array of strings. Suppose we have an array called fruits
containing strings like “apple,” “banana,” “peach,” and “kiwi.” If we want to display each of these fruits in
a view, we can use the ForEach container:

struct ForEachExampleView: View {
 let fruits = ["apple", "banana", "peach", "kiwi"]
 var body: some View {
 HStack {
 Text("My Fruits: ")
 .bold()
 ForEach(fruits, id: \.self) { fruit in
 Text(fruit)
 }
 }
 }
}

Here, we pass in the fruits array as the data argument to ForEach. The id parameter tells SwiftUI how to
identify each element in the array. In this case, we use \.self to use the string itself as the identifier. Now,
SwiftUI will display each fruit as a Text view:

Ranges of Numbers

Now, let’s say you want to display a range of numbers. You can use ForEach with a range like this:

ForEach(0..<10) { index in
 Text("index \(index)")
}

16 9

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/8-1-foreach

With ranges, you don’t need to provide an id property because each number is unique and ForEach uses
the numbers themselves as identifiers.

Enumerating and Identifying Elements

Sometimes, you might want to display both the index and the value from an array. You can use the
enumerated() method to achieve this:

struct ForEachExampleView: View {
 let fruits = ["apple", "banana", "peach", "kiwi"]

 var body: some View {
 VStack {
 ForEach(Array(fruits.enumerated()),
 id: \.element) { index, fruit in
 Text("\(index + 1). \(fruit)")
 }
 }
 }
}

I can call enumerated on the String array, but the resulting EnumeratedSequence<[String]> does not
conform to RandomAccessCollection. Instead, you can convert it back to an array. I use the element itself
(the string value) as the identifier with \.element.

In the ForEach closure, you then have access to the index and string values. In this example, I create a
numbered list:

Handling Unordered Collections: Dictionaries and Sets

Moving on, let’s discuss working with collections that are not naturally sorted, such as dictionaries and
sets. These collections require some additional steps to ensure proper ordering and identification.

Dictionaries are not inherently ordered, so you need to sort them before using them in a ForEach. For
dictionaries, we can sort them based on the keys using the sorted(by:) method. Here’s an example:

17 0

struct UnorderedDataView: View {
 let numberDictionary: [Int: String] = [1: "One",
 2: "Two",
 3: “Three"]
 var body: some View {
 VStack {
 ForEach(numberDictionary.keys.sorted(), id: \.self) { key in
 Text("\(key) with value \(numberDictionary[key] ?? "")")
 }
 }
 }
}

In this case, we create an array from the keys of the numberDictionary and sort them using sorted(). We
use \.self as the identifier, indicating that the key itself is the identifier. Now, we can display each key-
value pair in the dictionary.

Sets, on the other hand, are not ordered collections. To work with sets, we can either sort them or create
an array from them. Here’s an example of using a sorted set:

struct UnorderedDataView: View {
 @State private var uniqueNumbers: Set = [1,2,3,4,5]
 var body: some View {
 VStack {
 ForEach(uniqueNumbers.sorted(), id: \.self) { number in
 Text("number \(number)")
 }
 }
 }
}

Alternatively, we can create an array from the set and then use the array in the ForEach container.

ForEach(Array(uniqueNumbers), id: \.self) { number in
 Text("number \(number)")
}

Both approaches technically work, but keep in mind that calling Array() does not preserve any particular
order whereas sorted will result in always the same predefined order:

17 1

When working with dynamic data in SwiftUI, remember to always provide a unique identifier for
each element using the id parameter in ForEach. Additionally, ensure that your collections are
ordered when necessary. By doing so, you enable SwiftUI to manage and animate your views
effectively, leading to a smooth and responsive user experience.

8 . 2 I D E N T I F I A B L E DATA

In the previous section, I’ve shown you how to use ForEach with basic types like strings or integers. But
what happens when you’re dealing with custom types? Let’s say you’re not working with strings but with
a model type, such as Fruit. How do you handle that?

First, I’ll define a custom type called Fruit:

struct Fruit {
 var name: String
 var color: String
 var isFavorite: Bool
}

To display these fruits, I’ll use a ForEach loop with the id property:

let fruits = [
 Fruit(name: "Apple"),
 Fruit(name: "Banana"),
 Fruit(name: "Kiwi"),
 Fruit(name: "Cherry")
]

ForEach(fruits, id: \.name) { fruit in
 Text(fruit.name)
}

Instead of specifying the id every time, which can be cumbersome, you can conform to Identifiable
directly in your model:

struct Fruit: Identifiable {

17 2

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/8-2-identifiable-data-2

 var id: String { name }
 var name: String
 var color: String
 var isFavorite: Bool
}

Handling Unique Identifiers

Using the name as an identifier can lead to issues if you have fruits with the same name. When adding a
new fruit, if two fruits have the same name, SwiftUI may treat them as the same view because they share
the same identifier. This can lead to wired updating issues. To avoid this, use a unique identifier like UUID:

struct Fruit: Identifiable {
 let id = UUID()
 var name: String
 var color: String
 var isFavorite: Bool
}

Now, even if you add two fruits with the same name, SwiftUI recognizes them as separate entities
because they have unique identifiers.

When working with dynamic data in SwiftUI, it’s crucial to ensure each piece of data has a unique
identifier. This allows SwiftUI to track and update the UI correctly. By using the Identifiable protocol and a
unique identifier like UUID, you can avoid common pitfalls and ensure your views render as expected.

Remember, set the identifier when you create your data and make sure it stays the same throughout the
lifecycle of the data. This will save you from unexpected behavior and keep your SwiftUI views in perfect
order.

8 . 3 M A K I N G E N U M S I D E N T I F I A B L E

In this section, I’m going to walk you through how to make enums identifiable in SwiftUI. This is
particularly useful when you’re dealing with picker views, as they often present a set of options
derived from enum cases to the user.

Example 1: Weather Picker

Let’s start by creating a new file for our enum example view. We’ll define an enum called

WeatherType with a raw value of type String. Here’s how it looks:

enum WeatherType: String {
 case sunny = "Sunny"
 case cloudy = "Cloudy"
 case rainy = "Rainy"
 case snowy = "Snowy"
}

17 3

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/8-3-making-enums-identifiable

Now, let’s create a picker in our view. We’ll need a @State property to keep track of the selected weather
type. In our view, we’ll add a picker with a title and use the segmented picker style to display all options
at once:

struct EnumExampleView: View {
 @State private var selectedWeatherType = WeatherType.sunny

 var body: some View {
 VStack {
 Text("Select the Weather")
 .font(.title)

 Picker("Select", selection: $selectedWeatherType) {
 // Picker content will go here
 }
 .pickerStyle(.segmented)
 }
 }
}

Instead of manually typing out each case, we can leverage the CaseIterable protocol to access an array
of all the enum cases.

enum WeatherType: String, CaseIterable {
 …
}

This makes our code cleaner and more maintainable:

Picker("Select", selection: $selectedWeatherType) {
 ForEach(WeatherType.allCases) { type in
 Text(type.rawValue)
 }
}

However, to use ForEach, our enum needs to conform to the Identifiable protocol. We can satisfy this
requirement by adding an id property that returns the raw value, which is unique for each case:

174

enum WeatherType: String, CaseIterable, Identifiable {
 var id: String { self.rawValue }
 …
}

However, if you try to select an option in the picker you will notice that you cannot. To ensure that the
picker can properly identify and select the options, we’ll add a tag modifier to each option:

Picker("Select", selection: $selectedWeatherType) {
 ForEach(WeatherType.allCases) { type in
 Text(type.rawValue)
 .tag(type)
 }
}
.pickerStyle(.segmented)

Example 2: Eating Preference Enum

As a second example, let’s consider an EatingPreference enum without raw values. We’ll make it
CaseIterable and Identifiable as well:

enum EatingPreference: CaseIterable, Identifiable {
 case sweet
 case spicy
 case salty

 var id: Self { return self }

 var displayName: String {
 switch self {
 case .sweet: "Sweet"
 case .spicy: "Spicy"
 case .salty: "Salty"
 }
 }
}

Notice that for the id property, we’re returning the enum instance itself (self). This is possible because
enum cases are unique and hashable.

Now, let’s use this enum in another picker:

@State private var selectedEatingPreference: EatingPreference = .salty

Picker("Eating", selection: $selectedEatingPreference) {
 ForEach(EatingPreference.allCases) { preference in
 Text(preference.displayName)
 }
}
.pickerStyle(SegmentedPickerStyle())

17 5

In this case, we don’t need to add a tag because the enum itself is used for identification, which simplifies
the code.

8 . 4 F O R E A C H W I T H B I N D I N G

In this section, we’re going to explore how to add binding to a ForEach loop in SwiftUI. This feature
became available starting with iOS 15, and it’s a game-changer for working with dynamic data. Imagine
you have an array of fruits, and you want to let users pick a color for each fruit and toggle their favorite
status. Let’s dive into how you can achieve this with SwiftUI’s ForEach and binding.

First, you need to ensure your data model is mutable. Here’s what your Fruit model should look like:

struct Fruit: Identifiable {

 var name: String
 var color: Color
 var isFavorite: Bool
 let id: UUID

 init(name: String,
 color: Color = .yellow,
 isFavorite: Bool = false) {
 self.name = name
 self.color = color
 self.isFavorite = isFavorite
 self.id = UUID()
 }
}

Notice that id is a constant (let) because it should not change, while name, color, and isFavorite are
variables (var) because you want to allow the user to modify these properties.

Now, let’s create a SwiftUI view where we show a list of fruits. You’ll start with an array of Fruit objects
and use a ForEach to iterate over them:

struct BindingForeachExampleView: View {
 @State var fruits = [Fruit(name: "apple"),
 Fruit(name: "banana"),
 Fruit(name: "cherry"),
 Fruit(name: "kiwi")]

 var body: some View {
 VStack(alignment: .leading) {
 Text("What colors have these Fruits?")
 .font(.title)

 ForEach($fruits) { $fruit in
 // edit fruit information
 }
 }
 }
}

176

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/8-4-foreach-with-binding

In the ForEach, you use $fruits to pass a binding to each Fruit object. This allows you to create a
TextField and a ColorPicker that directly bind to the name and color properties of each Fruit. The Toggle
binds to the isFavorite property.

ForEach($fruits) { $fruit in
 HStack {
 Toggle("isFavorite",
 isOn: $fruit.isFavorite)
 .toggleStyle(FavoriteToggleStyle())

 TextField("Fruit", text: $fruit.name)

 ColorPicker(selection: $fruit.color) {
 Text("Color")
 }
 .labelsHidden()
 }
}

Any changes you make in the TextField or ColorPicker will be reflected immediately in the fruits array. This
is because you’re using bindings, which create a two-way connection between the UI elements and the
data.

You can use bindings with ForEach and List. Using List for the above example:

List($fruits) { $fruit in
 HStack {
 Toggle("isFavorite",
 isOn: $fruit.isFavorite)
 .toggleStyle(FavoriteToggleStyle())
 …
 }
}

You can customize the toggle style to make it more visually appealing. Here’s an example of a custom
FavoriteToggleStyle:

17 7

struct FavoriteToggleStyle: ToggleStyle {
 func makeBody(configuration: Configuration) -> some View {
 Button(action: {
 configuration.isOn.toggle()
 }) {
 Image(systemName: configuration.isOn ? "heart.fill" : "heart")
 .foregroundColor(.accentColor)
 .font(.system(size: 24))
 }
 }
}

8 . 5 L A Z Y V S TA C K A N D L A Z Y H S TA C K

When you’re aiming to boost your app’s performance, making it snappy and battery-efficient is key.
That’s where lazy containers come into play. Unlike their name suggests, they’re not lounging around all
day. They’re hard at work, but only when they need to be—specifically when the user is interacting with
the screen.

Imagine you have an app with a gallery of images. You wouldn’t want to load every single image if the
user is only viewing a few at a time. That’s where SwiftUI’s lazy containers come in handy. There are four
main types: LazyVStack, LazyHStack, LazyVGrid, and LazyHGrid. Even SwiftUI’s List is lazy by
default.

Understanding Lazy Loading

Let’s dive into an example. I’ll use a simple array of emojis to illustrate how lazy loading works. Picture a
ScrollView filled with emojis—there’s a lot of them, and they certainly won’t all fit on the screen at once.
This is a perfect scenario for a ScrollView.

Here’s how you might set it up:

struct LazyVStackExampleView: View {
 let emojis = Emoji.examples()

 var body: some View {
 ScrollView {
 LazyVStack {
 ForEach(emojis) { emoji in
 EmojiView(emoji: emoji)
 }
 }
 }
 }
}

In this example, EmojiView is a custom view that takes an emoji character and displays it. The magic
happens when you start scrolling. As new emojis come into view, SwiftUI initializes and renders them just
in time. This is similar to how UITableView works in UIKit with reusable cells.

17 8

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/8-5-lazyvstack-and-lazyhstack

When Views Are Created and Appear

To understand when each emoji view is created and appears, you can add print statements in two places:

• in the initializer of EmojiView

• In the .onAppear modifier

struct EmojiView: View {
 let emoji: Emoji

 init(emoji: Emoji) {
 print("emoji \(emoji.emojiSting) was initialized")
 self.emoji = emoji
 }

 var body: some View {
 GroupBox {
 Text(emoji.emojiSting)
 .font(.title)
 Text(emoji.valueString)
 .frame(maxWidth: .infinity)
 }
 .onAppear {
 print("emoji \(emoji.emojiSting) appears")
 }
 }
}

When you run this code, you’ll notice that the views are created and appear only as needed. This is the
essence of lazy loading—views are not created all at once but rather as the user scrolls through the
content.

17 9

LazyHStack Example

Now, let’s look at a horizontal scrolling example using LazyHStack. The setup is similar to LazyVStack,
but you’ll need to specify the scroll direction:

struct LazyHStackExampleView: View {
 let emojis = Emoji.examples()

 var body: some View {
 ScrollView(.horizontal) {
 LazyHStack {
 ForEach(emojis) { emoji in
 EmojiView(emoji: emoji)
 }
 }.padding()
 }
 }
}

With LazyHStack, you can scroll horizontally through your content, and just like with LazyVStack, SwiftUI
will only create views as they’re needed.

Using lazy stacks is crucial when dealing with large datasets, complex calculations, or resource-intensive
operations like loading images. Whether the images are local or fetched from the web, lazy loading
ensures that your app remains efficient and responsive.

Remember, the goal is to create views only when necessary. This not only improves performance but also
conserves memory usage, leading to a better user experience. So, when you’re faced with a long list of
data or a gallery of images, think lazy. It’s the smart way to load content dynamically.

8.6 Lazily Showing Images

When dealing with images in your SwiftUI app, especially when you have a large number of them, it’s
crucial to consider performance. In this section, I’ll guide you through the process of displaying images
efficiently, focusing on lazy loading to enhance your app’s performance.

Loading Images from Assets

Let’s start with images you’ve added to your asset catalog. I’ll demonstrate this with an
ImageGalleryView. Here’s a simple setup using a ScrollView and a VStack:

18 0

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/8-5-lazyvstack-and-lazyhstack/topics/8-6-lazily-showing-images

struct ImageAssetsGalleryView: View {
 let inspirations = NatureInspiration.examples()
 var body: some View {
 ScrollView {
 VStack {
 ForEach(inspirations) { inspiration in
 Image(inspiration.imageName)
 .resizable()
 .scaledToFit()
 }
 }
 }
 }
}

In this example, all images are loaded and rendered as soon as the view appears. This can cause a
significant spike in CPU usage and memory consumption. If you run this in your app and check the
debug area, you might see a CPU spike to 98% and memory usage of 200MB. This is not ideal,
especially if you have more images or larger data sets.

Using LazyVStack for Better Performance

To improve performance, replace VStack with LazyVStack. This lazy container only loads and renders
images as they come into view, which is much more efficient:

struct ImageAssetsGalleryView: View {
 let inspirations = NatureInspiration.examples()

 var body: some View {
 ScrollView {
 LazyVStack {
 ForEach(inspirations) { inspiration in

181

 Image(inspiration.imageName)
 .resizable()
 .scaledToFit()
 }
 }
 }
 }
}

After making this change, you’ll notice a significant reduction in CPU and memory usage when the app
launches. The initial memory footprint might be around 98MB, and CPU usage could drop to around
70%. As you scroll, more images are loaded, but only as needed, which is a much more efficient use of
resources. When the images are loaded you can see additional peaks in CPU usage:

Loading Images from the Web

Now, let’s tackle loading images from the web. For this, I’ll use AsyncImage. I’ve previously discussed
AsyncImage in the context of sizing images, and we’ll apply similar concepts here.

First, create a reusable view for loading images from a URL:

struct PicsumPhotoImage: View {

 let photo: PicsumPhoto
 let aspectRatio: CGFloat
 @Environment(\.displayScale) var scale

 init(photo: PicsumPhoto, aspectRatio: CGFloat? = nil) {
 self.photo = photo
 self.aspectRatio = aspectRatio ?? photo.aspectRatio
 }

 var body: some View {

18 2

 GeometryReader(content: { geometry in
 AsyncImage(url: url(in: geometry.size.width),
 scale: 3,
 transaction: .init(animation: .easeIn)) { phase in
 switch phase {
 case .empty:
 ZStack {
 Color(white: 0.8)
 ProgressView()
 }
 case .success(let image):
 image
 .resizable()
 .scaledToFit()
 case .failure(let error):
 Text(error.localizedDescription)
 // use placeholder for production app
 @unknown default:
 fatalError()
 }
 }
 })
 .aspectRatio(aspectRatio, contentMode: .fit)
 }

 func url(in width: CGFloat) -> URL? {
 let imageWidth = Int(width * scale)
 let imageHeight = Int(width * scale / aspectRatio)
 let urlString = "https://picsum.photos/id/\(photo.id)/\(imageWidth)/\
(imageHeight)"
 return URL(string: urlString)
 }
}

This view takes a PicsumPhoto object and loads the image from the provided URL. It uses a placeholder
color while the image is loading.

Next, use this view in a ScrollView with a LazyVStack:

struct ImageAsyncGalleryView: View {

 @StateObject private var photoLoader = PicsumPhotoLoader(page: 3,
 photosPerPage: 20)

 var body: some View {
 ScrollView {
 LazyVStack(spacing: 0) {
 ForEach(photoLoader.photos) {
 PicsumPhotoImage(photo: $0)
 }
 }
 }
 }
}

18 3

By using LazyVStack, you ensure that images are only loaded as they come into view, which is much
more efficient than loading all images at once.

Performance Implications

When you run the app and monitor the debug area, you’ll see the performance benefits of lazy loading.
With a VStack, you might have a CPU spike and a significant amount of data downloaded at once:

18 4

With a LazyVStack, the CPU usage and data downloaded (here 0.3MB instead of 2MB) are much lower
during launch, as images are only loaded when necessary. Once you scroll further more images are
loaded, which you can see from additional peaks in the debug network graph:

Remember, if users scroll up and down frequently, AsyncImage may re-download images that have left
the view. You can address this by implementing a caching policy or accepting this behavior, as most
users tend to scroll in one direction.

By only showing and downloading images as needed, you greatly improve the performance of your app.
This approach reduces network consumption, minimizes CPU usage, and ensures smooth scrolling and
fast image loading during app launch.

In summary, lazy loading images is a powerful strategy for optimizing the performance of your SwiftUI
app. It’s a simple change that can have a significant impact on how your app feels and behaves,
especially when dealing with a large number of images or dynamic data.

8.7 Smooth ScrollViews with Images

When dealing with async images in a ScrollView, it’s crucial to ensure a smooth user experience. One key
aspect is to provide an initial size for image placeholders. Let’s dive into what can go wrong and how to
fix it.

The Problem with Stuttering Image Galleries

Imagine you have an ImageGalleryView. You might notice that as images load, the layout shifts, causing a
stuttering effect.

struct ImageAsyncGalleryView: View {
 @StateObject private var photoLoader = PicsumPhotoLoader(page: 3,
 photosPerPage: 20)
 @Environment(\.displayScale) var scale

 var body: some View {

18 5

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/8-5-lazyvstack-and-lazyhstack/topics/8-7-smooth-scrollviews-with-images

 GeometryReader { geometry in
 ScrollView {
 LazyVStack(spacing: 2) {
 ForEach(photoLoader.photos) { photo in
 AsyncImage(url: url(in: geometry.size.width, photo: photo),
 scale: 3,
 transaction: .init(animation: .easeIn)) { phase in
 switch phase {
 case .empty:
 ZStack {
 Color.gray
 ProgressView()
 }.frame(height: 100)
 case .success(let image):
 image.resizable()
 .scaledToFit()
 case .failure(let error):
 Text(error.localizedDescription)
 .frame(height: 50)
 }
 }
 }
 }
 }
 }
 }

 func url(in width: CGFloat, photo: PicsumPhoto) -> URL? {
 let imageWidth = Int(width * scale)
 let imageHeight = Int(width * scale / photo.aspectRatio)
 let urlString = "https://picsum.photos/id/\(photo.id)/\(imageWidth)/\
(imageHeight)"
 return URL(string: urlString)
 }
}

This happens because the placeholder sizes don’t match the final images, leading to constant
rearrangement as new images load. Initially 8 placeholder images with a height of 100 points fit on
screen. When the images are finished loading only 3 images fit on screen:

18 6

This stuttering effect becomes worse when you scroll further down as the smooth scrolling is interrupted
by images being resized and moving in the ScrollView.

AsyncImage loads the image as long as the view is visible. When the image disappears before the
download is finished, an error occurs. You get this in the failure case of AsyncImage:

AsyncImage(url: url(in: geometry.size.width, photo: photo)) { phase in
 switch phase {
 case .empty:
 …
 case .success(let image):
 …
 case .failure(let error):
 Text(error.localizedDescription)
 .frame(height: 50)
 @unknown default:
 fatalError()
 }
}

During the initial loading, I was loading too many images. Once the images are displayed, SwiftUI
discards the unnecessary images. They disappear from the screen and the download tasks are canceled
if they did not finish before. If you scroll through the image gallery, you can find these canceled rows.

The Solution for Smooth Scrolling

To prevent stuttering, use placeholders that match the aspect ratio of the final images. This way, images
can fade in without affecting the layout.

18 7

For example, I can use the size of the images that I get from the server:

struct PicsumPhoto: Codable, Identifiable, Hashable {
 let id: String
 let author: String
 let width: CGFloat
 let height: CGFloat
 let url: String
 let downloadUrl: String

 var aspectRatio: CGFloat {
 width / height
 }

 …
}

And use it in the above example to size the placeholder:

AsyncImage(url: url(in: geometry.size.width, photo: photo)) { phase in
 switch phase {
 case .empty:
 ZStack {
 Color.gray
 ProgressView()
 }
 //.frame(height: 100)
 .aspectRatio(photo.aspectRatio, contentMode: .fit)
 case .success(let image):
 image.resizable()
 .scaledToFit()
 case .failure(let error):
 Text(error.localizedDescription)
 .frame(height: 50)
 }
}

The downloaded images also use the aspect ratio to fetch the appropriately sized image:

func url(in width: CGFloat) -> URL? {
 let imageWidth = Int(width * scale)
 let imageHeight = Int(width * scale / aspectRatio)
 let urlString = "https://picsum.photos/id/\(photo.id)/\(imageWidth)/\
(imageHeight)"
 return URL(string: urlString)
}

Smooth Image Gallery with Reusable Component

You can also write a reusable image component. In the following example, I am not using a
GeometryReader outside the ScrollView:

struct ImageAsyncGalleryView: View {
 @StateObject private var photoLoader = PicsumPhotoLoader(page: 3,
 photosPerPage: 20)

18 8

 var body: some View {
 ScrollView {
 VStack(spacing: 0) {
 ForEach(photoLoader.photos) {
 PicsumPhotoImage(photo: $0)
 }
 }
 }
 }
}

Instead, I use the GeometryReader inside the PicsumPhotoImage component to read the image area. I
am adding the aspect ratio with the photo value to the GeometryReader. Inside is the AsyncImage with
the placeholder. All states of the async image use the same aspect ratio and have thus the same size:

struct PicsumPhotoImage: View {

 let photo: PicsumPhoto
 let aspectRatio: CGFloat
 @Environment(\.displayScale) var scale

 init(photo: PicsumPhoto, aspectRatio: CGFloat? = nil) {
 self.photo = photo
 self.aspectRatio = aspectRatio ?? photo.aspectRatio
 }

 var body: some View {
 GeometryReader(content: { geometry in
 AsyncImage(url: url(in: geometry.size),
 scale: 3,
 transaction: .init(animation: .easeIn)) { phase in
 switch phase {
 case .empty:
 ZStack {
 Color(white: 0.8)
 ProgressView()
 }
 case .success(let image):
 image
 .resizable()
 .scaledToFit()
 case .failure(let error):
 Text(error.localizedDescription)
 // use placeholder for production app
 @unknown default:
 fatalError()
 }
 }
 })
 .aspectRatio(photo.aspectRatio, contentMode: .fit)
 }

 func url(in size: CGSize) -> URL? {
 let imageWidth = Int(size.width * scale)
 let imageHeight = Int(size.height * scale)
 let urlString = "https://picsum.photos/id/\(photo.id)/\(imageWidth)/\
(imageHeight)"
 return URL(string: urlString)
 }
}

18 9

Caching and Async Image Pitfalls

The AsyncImage view doesn’t handle caching, and it can cancel image loads if the view disappears
before loading completes. To address this, you can create a custom CachedAsyncImage that implements
caching.

struct CacheAsyncImage<Content>: View where Content: View {

 private let url: URL?
 private let scale: CGFloat
 private let transaction: Transaction
 private let content: (AsyncImagePhase) -> Content

 init(url: URL?,
 scale: CGFloat = 1.0,
 transaction: Transaction = Transaction(),
 @ViewBuilder content: @escaping (AsyncImagePhase) -> Content){
 self.url = url
 self.scale = scale
 self.transaction = transaction
 self.content = content
 }

 var body: some View{
 if let url, let cached = ImageCache[url] {
 let _ = print("cached: \(url.absoluteString)")
 content(.success(cached))
 } else {
 let _ = print("request: \(url?.absoluteString ?? "")")
 AsyncImage(
 url: url,
 scale: scale,
 transaction: transaction) { phase in
 cacheAndRender(phase: phase)
 }
 }
 }
 func cacheAndRender(phase: AsyncImagePhase) -> some View{
 if case .success (let image) = phase, let url {
 ImageCache[url] = image
 }
 return content(phase)
 }
}

You’ll need a caching mechanism to store and retrieve images efficiently. Here’s a simplified version of an
image cache:

class ImageCache {

 struct ImageData {
 let image: Image
 let timeStamp: Date
 }

 static private var cache: [URL: ImageData] = [:]
 static private let maxCacheNumber = 10
 static subscript(url: URL) -> Image?{

19 0

 get{
 ImageCache.cache[url]?.image
 }
 set{
 if ImageCache.cache.count >= maxCacheNumber,
 let first = ImageCache.cache.sorted(by: { $0.value.timeStamp <
$1.value.timeStamp }).first?.key {
 print("remove")
 ImageCache.cache.removeValue(forKey: first)
 }

 if let newValue {
 ImageCache.cache[url] = ImageData(image: newValue, timeStamp: Date())
 }
 }
 }
}

Replace AsyncImage with CachedAsyncImage in your views to benefit from caching.

// Usage in your SwiftUI view
CachedAsyncImage(url: url(for: size))) { image in
 image.resizable()
} placeholder: {
 Color.gray
}

While the provided cache example is basic, you might want to create a more robust solution using
URLSession and DataTask. Always monitor your app’s memory and network usage, and refine your
approach for the best performance.

8 . 8 L A Z Y VG R I D A N D L A Z Y H G R I D

In this section, we’re going to dive into grid layouts using SwiftUI’s LazyVGrid and LazyHGrid. Unlike a
one-dimensional list, grids allow us to display content in multiple columns or rows, which is perfect for
something like an image gallery. We’ll start with a simple example using emoji data to get a feel for how
these grids behave before moving on to more complex scenarios.

Understanding Lazy Grids with Emoji Data

First, let’s set up an example view using the emoji data provided in the emoji examples area. We’ll begin
with a LazyVGrid. To define a grid, you need to specify the number of columns, their sizing, alignment,
spacing, and the content itself. Here’s how you can define a LazyVGrid:

struct LazyVGridExampleView: View {
 let emojis = Emoji.examples()

 var body: some View {
 ScrollView {
 LazyVGrid(columns: [GridItem(.adaptive(minimum: 80), spacing: 10)],

191

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/8-8-lazyvgrid-and-lazyhgrid

 alignment: .center,
 spacing: 10) {

 ForEach(emojis) {
 EmojiView(emoji: $0)
 }
 }
 .padding()
 }
 }
}

In this example, columns is an array of GridItem that you need to define. There are three types of GridItem
you can use: .fixed, .flexible, and .adaptive.

Adaptive Grid Items

Adaptive grid items are particularly useful for creating responsive layouts. You set a minimum size, and
the grid will automatically fit as many items as possible across the available space. For
instance .adaptive(minimum: 80) will ensure that each item is at least 80 points wide. It will adapt to the
screen width and device orientation:

Fixed Grid Items

With .fixed, you set an exact size for each grid item. If you specify .fixed(150), each column will be exactly
150 points wide. The number of elements in the columns array determines the number of columns
shown. In the following, I am showing 5 columns with the same 150 points column width:

19 2

struct LazyVGridFixedExampleView: View {
 let emojis = Emoji.examples()
 let columns = Array(repeating: GridItem(.fixed(150)), count: 5)

 var body: some View {
 ScrollView([.horizontal, .vertical]) {
 LazyVGrid(columns: columns,
 alignment: .center,
 spacing: 10, content: {
 ForEach(emojis) {
 EmojiView(emoji: $0)
 }
 })
 .padding()
 }
 }
}

The resulting grid does not fit on the screen. Therefore, I used a ScrollView that scrolls in vertical and
horizontal directions.

Flexible Grid Items

Flexible grid items allow for a range of sizes. For example, .flexible(minimum: 50, maximum: 200) means
that the grid item can size itself flexibly within the given range, depending on the available space. The
following columns will show 2 columns with the first column being larger than the second:

19 3

let columns = [GridItem(.flexible(minimum: 100, maximum: 500)),
 GridItem(.flexible(minimum: 50, maximum: 200))]

This will always use 2 columns even if you could fit more on screen. You can also use GeometryReader to
decide how many columns you want to show:

struct LazyVGridFlexibleExampleView: View {
 let emojis = Emoji.examples()
 var body: some View {
 GeometryReader { geometry in
 ScrollView {
 LazyVGrid(columns: columns(width: geometry.size.width),
 alignment: .center,
 spacing: 10, content: {
 ForEach(emojis) {
 EmojiView(emoji: $0)
 }
 })
 .padding()
 }
 }
 }

 func columns(width: CGFloat) -> [GridItem] {
 let columnCount = width < 450 ? 3 : 6
 return Array(repeating: GridItem(.flexible(minimum: 70, maximum: 150),
 spacing: 10,
 alignment: .top),
 count: columnCount)
 }
}

I use the GeometryReader width to decide how many columns to show. For a smaller screen width than
450 points, I am only showing 3 columns. For larger areas like in landscape mode, I show columns.

19 4

Adjusting Grid Spacing and Alignment

You can adjust the spacing between rows in a LazyVGrid by setting the spacing parameter.

LazyVGrid(columns: columns,
 alignment: .center,
 spacing: 10) {
 …
}

If you want to change the spacing between columns, you need to adjust the spacing within the GridItem.

GridItem(.adaptive(minimum: 80), spacing: 10)

To prevent your content from touching the edges of the screen, it’s a good idea to add padding around
your grid: .padding()

ScrollView {
 LazyVGrid(columns: columns) {
 …
 }
 .padding()
}

Exploring LazyHGrid

Now, let’s switch gears and look at LazyHGrid, which is similar to LazyVGrid but for horizontal grids.
Instead of columns, we define rows. The principles are the same but keep in mind that the fixed size now
applies to the height of each row.

Here’s a basic setup for a LazyHGrid, where I show 3 rows with a fixed height of 100 points:

struct LazyHGridExampleView: View {
 let emojis = Emoji.examples()
 let spacing: CGFloat = 10

 var rows: [GridItem] {
 Array(repeating: GridItem(.fixed(100), spacing: spacing),
 count: 3)
 }

 var body: some View {
 ScrollView(.horizontal) {
 LazyHGrid(rows: rows, spacing: spacing) {
 ForEach(emojis) { emoji in
 Text(emoji.emojiSting)
 .font(.system(size: 45))

19 5

 .padding()
 .frame(maxHeight: .infinity)
 .background(RoundedRectangle(cornerRadius: 15)
 .fill(Color(white: 0.9)))
 }
 }
 .padding(spacing * 2)
 }
 }
}

Lazy grids in SwiftUI are incredibly versatile and can be tailored to fit a wide range of layout needs.
Whether you’re working with fixed, flexible, or adaptive grid items, you can create layouts that look great
on any device and orientation. In the next lesson, we’ll take these concepts further by creating an image
grid that will showcase the true power of lazy grids in SwiftUI.

8 . 9 I M A G E G A L L E RY W I T H L A Z Y VG R I D A N D L A Z Y H G R I D

In this section, I’ll show you how to create an image gallery using LazyVGrid in SwiftUI. Let’s start by
creating a new view called ImageGridGalleryView in the image gallery folder.

Image Gallery with Images from the Assets Catalog

First, we’ll use images from the assets. Remember the natureInspirations examples array? We’ll be using
that. With LazyVGrid, we have three layout options: adaptive, flexible, or fixed. For an image gallery, fixed
sizes aren’t ideal, so let’s opt for adaptive to take advantage of its flexibility.

Here’s how you can set it up:

struct ImageGridGalleryView: View {
 let inspirations = NatureInspiration.examples()
 var body: some View {
 ScrollView {
 LazyVGrid(columns: [GridItem(.adaptive(minimum: 180),

19 6

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/8-9-image-gallery-with-lazyvgrid-and-lazyhgrid

 spacing: 0)],
 alignment: .center,
 spacing: 0, content: {
 ForEach(inspirations) {
 ImageAspectView(imageName: $0.imageName,
 frameAspectRatio: 1.2)

 }
 })
 }
 }
}

Notice that I’ve set the spacing to zero to fill out the grid nicely. However, due to different aspect ratios of
images, you might encounter some sizing issues. To address this, use ImageAspectView with aspect ratio
set to 1.2, creating a uniform rectangular layout.

Image Gallery with AsyncImage

Now, let’s explore LazyHGrid for a horizontal image gallery. We’ll use the same natureInspirations data but
with a twist: instead of static images, we’ll load them asynchronously.

Here’s a snippet to get you started:

struct ImageHGridGalleryView: View {

 @StateObject private var photoLoader = PicsumPhotoLoader(page: 2,
 photosPerPage: 40)
 let rows = Array(repeating: GridItem(.fixed(150), spacing: 0),
 count: 3)

19 7

 var body: some View {
 ScrollView(.horizontal) {
 LazyHGrid(rows: rows,
 alignment: .center,
 spacing: 0, content: {
 ForEach(photoLoader.photos) {
 PicsumPhotoImage(photo: $0,
 aspectRatio: 1)
 }
 })
 }
 }
}

In this example, I’ve set the rows to a fixed size of 150 and removed the spacing to create a uniform
layout. I want to achieve a square image pattern:

Therefore I am setting the aspect ratio of the asynchronously loaded images to 1. To achieve this you can
modify the PicsumPhotoImage component from the previous section. As an extra argument, you can use
the aspectRatio parameter. If you don’t pass it in the initialiser, the default inherited aspect ratio is used
that is provided in the PicsumPhoto instance:

struct PicsumPhotoImage: View {

 let photo: PicsumPhoto
 let aspectRatio: CGFloat
 @Environment(\.displayScale) var scale

 init(photo: PicsumPhoto, aspectRatio: CGFloat? = nil) {
 self.photo = photo
 self.aspectRatio = aspectRatio ?? photo.aspectRatio
 }

 var body: some View {
 GeometryReader(content: { geometry in
 AsyncImage(url: url(in: geometry.size),
 scale: 3,
 transaction: .init(animation: .easeIn)) { phase in
 switch phase {
 case .empty:
 ZStack {

19 8

 Color(white: 0.8)
 ProgressView()
 }
 case .success(let image):
 image
 .resizable()
 .scaledToFit()
 case .failure(let error):
 Text(error.localizedDescription)
 // use placeholder for production app
 @unknown default:
 fatalError()
 }
 }
 })
 .aspectRatio(aspectRatio, contentMode: .fit)
 }

 func url(in size: CGSize) -> URL? {
 let imageWidth = Int(size.width * scale)
 let imageHeight = Int(size.height * scale)
 let urlString = "https://picsum.photos/id/\(photo.id)/\(imageWidth)/\
(imageHeight)"
 return URL(string: urlString)
 }
}

Tips for Using Lazy Grids

Using LazyVGrid and LazyHGrid is straightforward, but the challenge lies in choosing between fixed,
flexible, or adaptive configurations. For a vertical grid, an adaptive approach is useful to fill the entire
screen width and scroll vertically.

Another important aspect is resizing the images to fill the grid cells correctly. You might recall our
discussions on image resizing; those concepts are now paying off as we have reusable views that
maintain the aspect ratio while fitting the designated space.

Asynchronously loading images from a server to fill the grid is another advanced technique that enhances
the user experience by ensuring images are displayed as soon as they’re downloaded.

Lastly, you can combine LazyVGrid and LazyHGrid in various ways to create complex layouts. For
instance, you can nest multiple horizontal scroll views within a vertical scroll view or mix image galleries
with other UI elements to craft a rich, dynamic interface.

Remember, these grids are particularly powerful for image galleries, allowing you to create visually
appealing layouts that are both functional and engaging.

19 9

8 .10 I N F I N I T I V E L O A D I N G V I E W

When you’re working with a list of images that loads asynchronously, you might have initially set up your
app to load a fixed number of images, say 20 photos per page. But what happens when the user scrolls
to the end of these images? Typically, you’d expect the list to keep scrolling and loading more images
indefinitely. This is known as an infinite scroll view, and in this section, I’ll show you how to implement this
in SwiftUI.

Understanding the Infinite Scroll Concept

Firstly, you need to decide when to trigger the loading of more images. As a user, you wouldn’t expect the
list to abruptly stop. Instead, you’d want to continue scrolling and see a loading indicator that more
content is on the way.

Setting Up the Loading Indicator

You’ll want to display a loading indicator at the bottom of your list. This can be similar to the placeholder
view you might have used before. For instance, you can use a progress view as a card that appears at
the end of your list.

In the below image sequence, you can see the large placeholder first that should start the download of
more pages. Next, you can see the loading placeholders for the individual images. Finally, all downloaded
images are displayed:

To make sure it fills the entire height of the screen, you can use containerRelativeFrame. When this large
initial loading indicator appears, that’s your cue to start fetching the next set of images.

2 0 0

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/8-10-infinitive-loading-view

struct InfinitePhotosView: View {
 @StateObject private var photoLoader = InfinitePhotoLoader(page: 1,
 photosPerPage: 10)
 var body: some View {
 ScrollView {
 LazyVStack(spacing: 2) {
 ForEach(photoLoader.photos) {
 PicsumPhotoImage(photo: $0)
 }

 ZStack {
 Color(white: 0.9)
 ProgressView()
 .controlSize(.extraLarge)
 }
 .containerRelativeFrame(.vertical)
 .onAppear {
 photoLoader.loadImages()
 }
 }
 }
 }
}

However, you don’t want to start loading everything all at once, so you’ll need to modify your view model
to handle this new behavior.

Creating the Infinite Photo Loader ViewModel

Create a new Swift file named InfinitePhotoLoader.swift and set up a new ObservableObject class
called InfiniteLoader. This class will need properties to keep track of the current page, the number of
photos per page, and whether it’s currently loading images.

Here’s a basic structure for your InfiniteLoader class:

class InfinitePhotoLoader: ObservableObject {

 @Published var photos: [PicsumPhoto] = []

 var page: Int
 let photosPerPage: Int

 @Published var isLoading = false

 init(page: Int = 1, photosPerPage: Int = 10) {
 self.page = page
 self.photosPerPage = photosPerPage
 }

 func loadImages() {

 guard !isLoading else { return }
 isLoading = true

 let urlString = "https://picsum.photos/v2/list?page=\(page)
 &limit=\(photosPerPage)"
 page += 1
 guard let url = URL(string: urlString) else { return }

2 01

https://picsum.photos/v2/list?page=%5C(page)

 URLSession.shared.dataTask(with: url) { data, response, error in
 if let data,
 let photos = try? JSONDecoder().decode([PicsumPhoto].self,
 from: data) {
 DispatchQueue.main.async {
 self.photos.insert(contentsOf: photos, at: self.photos.count)
 self.isLoading = false
 }
 }
 }.resume()
 }
}

Loading More Images

When you reach the end of the currently loaded images, you’ll want to load more. To do this, increment
the currentPage property each time you fetch a new set of images. Make sure to append the new images
to the existing array rather than replacing them.

Implementing the Infinite Scrolling

In your InfinitePhotosView, use the onAppear modifier on the loading indicator view to trigger the

loadImages function of your InfiniteLoader view model. This will ensure that more images are loaded
when the user reaches the end of the list.

Here’s an example of how you might implement this:

ScrollView {
 LazyVStack(spacing: 2) {
 ForEach(photoLoader.photos) {
 PicsumPhotoImage(photo: $0)
 }

 ZStack {
 Color(white: 0.9)
 ProgressView()
 .controlSize(.extraLarge)
 }
 .containerRelativeFrame(.vertical)
 .onAppear {
 photoLoader.loadImages()
 }

 }
}

By using the onAppear modifier on a loading indicator, you can create an infinite scrolling experience
without having to manually check the scroll position. Alternatively, you can also use the newer task
modifier that works with async await.

Remember to update your view model to handle the loading state and keep track of which page you’re
on. Although the API you’re using might not provide information on the total number of pages available,
the key takeaway is knowing when to fetch more data to keep the UI continuously populated with new
images as the user scrolls.

2 0 2

C H A L L E N G E S 🖐

In our journey through SwiftUI, we’ve explored the power of LazyVGrid and LazyHGrid for creating image
and emoji grid views. But did you know that these grids can also be harnessed for other adaptive
layouts?

Challenge: Grid Columns for Adaptive Layout

Imagine you have a list that showcases nature-inspired images, complete with titles and descriptions.
These elements are neatly arranged in an HStack, forming individual cells. When you rotate your device to
landscape mode, you want the layout to adapt and display two columns instead of one. This not only
utilizes the space more efficiently but also prevents the text from stretching too wide, which could
compromise the aesthetics of your layout.

To incorporate this InspirationRowView into my list, I replaced the LazyVStack with a LazyVGrid. To
ensure that only one column is displayed in portrait mode, I set the minimum column width to a high
value, such as 250 points. This width is too large for any iPhone to accommodate two columns in portrait
mode, so it defaults to a single column.

struct InspirationColumnExampleView: View {

 let inspirations = NatureInspiration.examples()

 var body: some View {
 ScrollView {
 LazyVGrid(columns: [GridItem(.adaptive(minimum: 300), spacing: 10)]) {
 ForEach(inspirations) { inspiration in
 InspirationRowView(inspiration: inspiration)
 }
 }
 .padding()
 }
 }
}

2 0 3

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/%F0%9F%96%90%EF%B8%8F-challenges
https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/%F0%9F%96%90%EF%B8%8F-challenges/topics/%F0%9F%96%90%EF%B8%8F-challenge-grid-columns-for-adaptive-layout

However, when you switch to landscape mode, the device has enough space to fit two columns. This
simple adjustment with LazyVGrid allows for a layout that gracefully adapts to different device
orientations. It’s also worth noting that this approach scales well on larger devices like iPads or Macs,
where you might see three columns on an 11-inch iPad, for example.

Challenge: Layout Switch VStack to HStack

In this section, we’re going to explore a slightly unconventional use of LazyVGrid in SwiftUI. Imagine you
have a collection of items, and each item has an image, a title, and a description. You’ve laid them out in
a ScrollView, and it looks great in portrait mode on your iPhone. But what happens when you switch to
landscape mode? If you keep the same layout, it might look off. The images could be too large, or the
text might stretch too far across the screen. It’s not ideal.

So, what you want is a layout that adapts to the orientation of the device. In landscape mode, it would be
much nicer to have the title and text next to the image, rather than below it.

This is where LazyVGrid comes into play. I started with a ScrollView, nothing new there. Then, I used a
LazyVGrid. But here’s the twist: I used the .adaptive grid item to show not just one view for each item, but
two. One is the image, and the other is a VStack containing the text and title.

The LazyVGrid will now attempt to place these two elements—the image and the VStack text—
separately. Both elements are set to be adaptive, which means that on an iPhone in portrait mode, it can
only fit one column at a time because of the minimum width of 250 points.

struct LargeInspirationColumnExampleView: View {

 let inspirations = NatureInspiration.examples()
 let columns = [GridItem(.adaptive(minimum: 350),
 spacing: 10)]
 var body: some View {

2 0 4

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/%F0%9F%96%90%EF%B8%8F-challenges/topics/%F0%9F%96%90%EF%B8%8F-challenge-layout-challenge-vstack-to-hstack

 ScrollView {
 LazyVGrid(columns: columns,
 alignment: .leading,
 spacing: 10) {
 ForEach(inspirations) { inspiration in
 Image(inspiration.imageName)
 .resizable()
 .scaledToFit()
 .clipShape(RoundedRectangle(cornerRadius: 5))

 VStack(alignment: .leading, spacing: 5) {
 Text(inspiration.name)
 .font(.title2)
 Text(inspiration.description)
 }
 .padding(.bottom)
 .padding(.vertical)
 .padding(.leading, 5)
 }
 }
 .padding()
 }

 }
}

However, when you rotate the device to landscape mode, it will show 2 columns. It doesn’t really care
what you put inside; it just takes the first view that it has inside for its first element in the first column,
then uses the second element for the second column, and so on. It simply distributes these elements
across the grid.

With this simple trick of using the LazyVGrid, you get a very nice, adaptive layout. The elements move
around smoothly with the animations, creating a dynamic and responsive design that looks good in both
portrait and landscape orientations.

Remember, the key here is to think about how your layout should adapt to different screen sizes and
orientations. By using LazyVGrid with adaptive columns, you can create a flexible layout that adjusts to
the available space, providing a great user experience no matter how the device is held.

Challenge: Waterfall Image Gallery

In our journey through SwiftUI layouts, we’ve explored a variety of ways to present images. Now, I want
to introduce you to another layout style that you can create based on what I’ve already shown you. This is
a waterfall, Pinterest-style layout. It’s a lazily loaded layout with two columns, where each column
maintains the same aspect ratio—a hallmark of the waterfall layout. This layout uses AsyncImage for
efficient, lazy loading.

2 0 5

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/%F0%9F%96%90%EF%B8%8F-challenges/topics/%F0%9F%96%90%EF%B8%8F-challenge-image-gallery

To make the layout lazy, I’ve used an HStack containing two lazy VStacks. While the HStack itself isn’t
lazy and creates both columns immediately, the images within the lazy VStacks are loaded as needed.

struct LazyWaterfallImageGridExampleView: View {

 @StateObject var firstPhotoLoader = PicsumPhotoLoader(page: 6)
 @StateObject var secondPhotoLoader = PicsumPhotoLoader(page: 4)

 let spacing: CGFloat = 2

 var body: some View {
 ScrollView {
 HStack(alignment: .top, spacing: spacing) {
 LazyVStack(spacing: spacing) {
 ForEach(firstPhotoLoader.photos) { photo in
 PicsumPhotoImage(photo: photo)
 }
 }

 LazyVStack(spacing: spacing) {
 ForEach(secondPhotoLoader.photos) { photo in
 PicsumPhotoImage(photo: photo)
 }
 }
 }
 }
 }
}

2 0 6

This approach is similar to what we’ve done before, using ForEach to display images with their natural
aspect ratios. To handle data for two columns, I’ve simply created two different arrays of example data.

Here I use PicsumPhotoImage, which loads images asynchronously, handling caching and other
complexities. I’ve set the spacing to 2 to create a neat grid layout. To populate the columns with different
images, I’ve assigned different pages of data to each, which might seem a bit hacky, but it’s effective and
straightforward.

As we reach the bottom of the scroll view, you could trigger a reload of additional pages to keep the
content fresh. Ideally, you’d fetch images with varying aspect ratios from the server to add diversity to the
layout. However, as you can see, this setup is quite simple—much easier than some of the more complex
layouts we’ve discussed.

Challenge: Grid Cards

In this layout challenge, I will change the current layout into a grid style, using the icons. I want to ensure
that the indigo background has an aspect ratio of 1, so it scales nicely across different screen sizes.
Remember, no fixed frames are allowed—your layout must be adaptable.

For my solution, I chose LazyVGrid because I may add more pet categories in the future. A vertical layout
is more space-efficient when there’s nothing else in the view. The key here is to define the columns. I’ve
decided on two columns that adjust to screen sizes, so I use an array of GridItems with the flexible
modifier to allow them to stretch.

struct EmojiPetPalGalleryView: View {
 let pets: [Pet]
 private let padding: CGFloat = 10

2 0 7

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/%F0%9F%96%90%EF%B8%8F-challenges/topics/%F0%9F%96%90%EF%B8%8F-challenge-card-grid

 private var columns: [GridItem] {
 Array(repeating: GridItem(.flexible(minimum: 100),
 spacing: padding),
 count: 2)
 }

 var body: some View {
 NavigationStack {
 ScrollView {
 LazyVGrid(columns: columns, spacing: padding) {
 ForEach(pets, id: \.type) { pet in
 PetCardView(pet: pet)
 }
 }
 .padding(padding * 2)
 }
 .navigationBarTitle("Pet Gallery")
 }
 }
}

I encapsulate the emoji and text within a PetCardView. To achieve the desired aspect ratio for each card, I
use a ZStack with a RoundedRectangle and a VStack with the emoji and text on top. Outside the
ZStack, I apply the aspectRatio modifier.

struct PetCardView: View {
 let pet: Pet
 var body: some View {
 ZStack {
 RoundedRectangle(cornerRadius: 15)
 .fill(Color.indigo.gradient)
 .shadow(radius: 5)
 VStack {
 Text(emoji(for: pet))
 .font(.system(size: 100))

 Text(pet.type.displayName)
 .foregroundStyle(Color.white)
 .font(.title)
 .bold()
 }
 }
 .aspectRatio(1, contentMode: .fill)
 }

 func emoji(for pet: Pet) -> String {
 switch pet.type {
 case .cat: "😸 "
 case .dog: "🐶 "
 case .fish: "🐠 "
 case .horse: "🐴 "
 }
 }
}

2 0 8

Grid layouts are common in app design. For example, a meditation app might use a grid to display
different practice categories, each with an icon and text. Incorporating such card-style grids in your apps
can help you make the most of the available space and enhance the user experience.

2 0 9

9 . S C R O L LV I E W
Throughout this book, you’ve encountered ScrollView multiple times. However, it’s time to delve deeper
into this versatile component. ScrollView has a plethora of functionalities, and with the introduction of
new APIs in iOS 17, it has become even more powerful. New features are paging, programmatic scrolling,
and scroll transition effects.

9 .1 W H Y U S E S C R O L LV I E W ?

ScrollView is your go-to when you have more content than what can be displayed on a single screen. It’s
incredibly flexible, allowing for both horizontal and vertical scrolling.

Imagine you’re dealing with dynamic data, like a list that could potentially have hundreds of entries. In its
simplest form, ScrollView tries to accommodate its size to the content within. For large datasets, you’d
typically use a LazyVStack, as I’ve discussed in previous sections.

Another scenario where ScrollView shines is when you want to ensure your content is accessible and fits
on all screen sizes, including those with accessibility settings enabled. Here’s a simple example:

struct DetailView: View {
 let inspiration = NatureInspiration.example1()
 var body: some View {
 ScrollView {
 VStack {
 ResizableImageView(imageName: inspiration.imageName)
 Text(inspiration.name)
 .font(.title)
 Text(inspiration.description)
 }
 .padding()
 }
 }
}

210

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/9-1-introduction

In this DetailView, even if the content is minimal, you might have instances where the text is lengthy.
Wrapping your content in a ScrollView ensures it remains accessible and fits on the screen, regardless of
the amount of text or the device’s screen size.

The primary use case for ScrollView is to create adaptable views that cater to various screen sizes and
accommodate different accessibility font sizes.

9 . 2 C U S T O M I Z I N G T H E A P P E A R A N C E O F S C R O L LV I E W

When working with ScrollView in SwiftUI, you have a variety of options to customize its appearance to fit
your design needs. In this section, I’ll guide you through the process of tweaking ScrollView properties
such as disabling scrolling, showing or hiding scroll indicators, adding padding, and preventing content
clipping.

As an example, I will use the following horizontal scroll view with image cards:

struct ScrollCustomExampleView: View {
 let inspirations = NatureInspiration.examples()
 let spacing = 10
 var body: some View {
 ScrollView(.horizontal) {
 HStack(spacing: spacing) {
 ForEach(inspirations) { inspiration in
 InspirationCard(inspiration: inspiration)
 .containerRelativeFrame(.horizontal, count: 4, span: 3,
 spacing: spacing)
 }
 }
 }
 .padding()
 }
}

struct InspirationCard: View {
 let inspiration: NatureInspiration
 let frameAspectRatio: CGFloat

 init(inspiration: NatureInspiration, frameAspectRatio: CGFloat = 1.5) {
 self.inspiration = inspiration
 self.frameAspectRatio = frameAspectRatio
 }

 var body: some View {
 ImageAspectView(imageName: inspiration.imageName,
 frameAspectRatio: frameAspectRatio,
 cornerRadius: 15)
 .shadow(radius: 5)
 .overlay(alignment: .bottomTrailing) {
 Text(inspiration.name)
 .bold()
 .foregroundStyle(.white)
 .padding()
 }
 }
}

211

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/9-2-customize-appearance-of-scrollview

Preventing Content Clipping

In previous versions of iOS, shadows or other effects might get clipped at the edges of a ScrollView.
Starting with iOS 17, you can prevent this clipping using the .scrollClippingDisabled(_:) modifier:

ScrollView(.horizontal) {
 …
}
.padding()
.scrollClipDisabled(true)

This ensures that visual effects like shadows are fully visible, even at the edges of the ScrollView.

Adding Padding and Margins

To add space around your content within the ScrollView, you can use padding or the newer
contentMargins modifier. You can use padding to the views inside ScrollView:

ScrollView(.horizontal) {
 HStack {
 …
 }
 .padding(20)
}

Or, using contentMargins, which adds space around the content inside the ScrollView:

ScrollView(.horizontal) {
 HStack {
 …
 }
}
.contentMargins(20)

212

Both of the above modifications will result in the same layout.

However, contentMargins also allows you to set the scroll indicator margins separately:

.contentMargins(20)

.contentMargins(5, for: .scrollIndicators)

In the above example, the scroll indicator initially overlaps with the image cards. I can change this with
the help of the content margins and the scroll indicator is placed below the images.

Scroll Indicators

By default, ScrollView shows scroll indicators, but you can easily hide them if you prefer a cleaner look.
Use the showsIndicators parameter in the ScrollView initializer or the .scrollIndicatorVisibility(_:)
modifier for more control:

ScrollView(.horizontal, showsIndicators: false) {
 …
}

213

Or, for iOS 16 and later:

ScrollView(.horizontal) {
 …
}
 .scrollIndicators(.hidden)

If you want to make the scroll indicators more prominent and flash them to draw attention to the
scrollable area, you can use scrollIndicatorsFlash which is available for iOS 17+. You can use this modifier
to control whether the scroll indicators of a scroll view briefly flash when the view first appears:

ScrollView(.horizontal) {
 …
}
.scrollIndicatorsFlash(onAppear: true)

or flash scroll indicators when a value changes, use scrollIndicatorsFlash(trigger:) instead. Here is an
example that flashes the indicator every time the number value changes, which happens when you press
the button:

struct ScrollCustomExampleView: View {
 @State private var number: Int = 1

 var body: some View {
 ScrollView(.horizontal) {
 …
 }
 .scrollIndicatorsFlash(trigger: number)

 Button {
 number += 1
 } label: {
 Text("increase number \(number)")
 }
 }
}

Disabling Scrolling

Sometimes, you might want to present your content in a ScrollView but disable the scrolling temporarily.
This can be done by setting the isScrollEnabled modifier to false. Here’s how you do it:

ScrollView(.horizontal) {
 …
}
.scrollDisabled(true)

With this modifier, your ScrollView will no longer respond to scroll gestures.

214

9 . 3 S C R O L L D I R E C T I O N

In SwiftUI, customizing the scroll direction of a ScrollView is straightforward. By default, a ScrollView is
vertical, but you can easily change it to horizontal or even allow for both directions. Let’s dive into how
you can set this up.

Vertical Scroll Example View

The default scroll direction is vertical. You don’t need to specify anything. It applies a default alignment
and spacing which you can change by embedding the content of the ScrollView in a VStack or
LazyVStack:

ScrollView {
 LazyVStack(alignment: .leading, spacing: 10) {
 ForEach(inspirations) { inspiration in
 InspirationCard(inspiration: inspiration)
 }
 }
 .padding(20)
}

Horizontal Scroll Example View

To create a horizontal ScrollView, you’ll need to specify the axis. This is done using the

axes argument within the ScrollView initializer. Here’s an example:

ScrollView(.horizontal) {
 LazyHStack {
 ForEach(inspirations) { inspiration in
 InspirationCard(inspiration: inspiration)

215

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/9-3-scroll-direction

 }
 }
 .padding()
}
.frame(height: 200)

Remember, when you’re using a horizontal ScrollView, you’ll typically want to use an HStack to lay out
your content horizontally.

Bidirectional Scroll Example View

Sometimes, you might want to allow scrolling in both directions. This can be particularly useful for large
tables or when displaying a lot of data. To enable bidirectional scrolling, you’ll use a set of axes:

struct BidirectionalScrollExampleView: View {
 let emojis = Emoji.examples()
 let columns = Array(repeating: GridItem(.fixed(150)), count: 5)
 var body: some View {
 ScrollView([.horizontal, .vertical]) {
 LazyVGrid(columns: columns,
 alignment: .center,
 spacing: 10, content: {
 ForEach(emojis) {
 EmojiView(emoji: $0)
 }
 })
 .padding()
 }
 }
}

9 . 4 S C R O L L C O N T E N T S I Z E

When working with ScrollView in SwiftUI, sizing the content correctly can be a bit of a challenge. The
ScrollView has its own sizing behavior, which can complicate things, especially when dealing with images
that you want to scale to fit the available space. In this section, I’m going to walk you through two
strategies to handle this: using GeometryReader and the containerRelativeFrame modifier, which is new
in iOS 17.

Practical Example

Let’s say you have a horizontal ScrollView with 3 rows of images, and you want to show just a bit of the
next column to indicate that the view is scrollable. You might be tempted to set a fixed width, but this
won’t adapt well to different screen sizes.

For example I want to show half of the images that are shown in the second column:

216

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/9-4-scrollview-content-size

Using GeometryReader

First up, let’s talk about GeometryReader. This is a view that provides you with the size and position of its
parent view. It’s particularly useful when you need to size content within a ScrollView because it lets you
make decisions based on the available space. Here’s how you can use GeometryReader:

struct ScrollContentGeometryReaderExampleView: View {
 let inspirations = NatureInspiration.examples()
 let padding: CGFloat = 10
 let imageSize: CGFloat = 100

 var rows: [GridItem] {
 Array(repeating: GridItem(.fixed(imageSize)), count: 3)
 }

 var body: some View {
 GeometryReader { proxy in
 ScrollView(.horizontal) {
 LazyHGrid(rows: rows, spacing: padding) {
 ForEach(inspirations) { inspiration in
 InspirationRowView(inspiration: inspiration,
 imageSize: imageSize)
 .frame(width: proxy.size.width - padding * 2
 - imageSize * 0.5)
 }
 }
 .padding(padding)
 }
 }
 }
}

Here, I’m subtracting the padding from the ScrollView’s width and half of the next image size.

217

Remember to account for any padding or spacing you’ve added when calculating sizes. For example, if
you want to show a grid of images and you’ve added padding around them, you’ll need to subtract this
padding from the width provided by the GeometryReader to get the correct size for your images.

Using containerRelativeFrame

The second strategy involves the containerRelativeFrame modifier. This is a powerful tool that allows you
to size your content relative to its container. It’s particularly handy when you’re dealing with a ScrollView
because it lets you reference the size of the ScrollView directly.

Here’s the above example implemented with containerRelativeFrame:

struct ScrollContainerRelativeFrameExampleView: View {
 let inspirations = NatureInspiration.examples()
 let padding: CGFloat = 10
 let imageSize: CGFloat = 100

 var rows: [GridItem] {
 Array(repeating: GridItem(.fixed(imageSize)), count: 3)
 }

 var body: some View {
 ScrollView(.horizontal) {
 LazyHGrid(rows: rows, spacing: padding) {
 ForEach(inspirations) { inspiration in
 InspirationRowView(inspiration: inspiration,
 imageSize: imageSize)
 .containerRelativeFrame(.horizontal) { length, axis in
 length - padding * 2 - imageSize * 0.5
 }
 }
 }
 .padding(padding)
 }

 }
}

You can adjust the width and height parameters to control how much space the content should occupy
relative to its container.

ContainerRelativeFrame offers a more straightforward way to size content relative to its container.
Remember, containerRelativeFrame is only available in iOS 17 and later, so if you’re supporting earlier
versions, you’ll need to stick with GeometryReader.

218

9 . 5 S C R O L L B E H AV I O U R

When working with ScrollViews in SwiftUI, a common feature you might want to implement is a snapping
or paging behavior. This is where the content automatically aligns itself to a certain point on the screen
when the user stops scrolling. Without this, users have to manually align the content, which can be a
cumbersome experience.

Implementing Paging with TabView

Before diving into the latest iOS features, let’s explore an alternative for earlier iOS versions using a
TabView with page tab view style. This approach is particularly useful for creating onboarding screens or
any scenario where you want to present full-screen content that the user can page through.

Here’s how you can set it up:

struct TabPageExampleView: View {
 let inspirations = NatureInspiration.examples()

 var body: some View {
 TabView {
 ForEach(inspirations) { inspiration in
 InspirationCard(inspiration: inspiration)
 .padding()
 }
 }
 #if os(iOS)
 .tabViewStyle(.page(indexDisplayMode: .always))
 .indexViewStyle(.page(backgroundDisplayMode: .always))
 #endif
 }
}

219

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/9-5-scrollview-paging-behavior

By setting the tabViewStyle to PageTabViewStyle and the indexDisplayMode to .always, you enable the
paging behavior and display the page indicators. This makes it clear to the user which page they’re on
and allows them to tap the indicators to quickly navigate between pages.

Paging with ScrollView in iOS 17

Now, let’s talk about the scrollTargetBehavior, a new feature introduced in iOS 17 that allows for similar
paging behavior within a ScrollView:

ScrollView(.horizontal) {
 LazyHStack(spacing: 0) {
 ForEach(inspirations) { inspiration in
 InspirationCard(inspiration: inspiration)
 .padding()
 .containerRelativeFrame(.horizontal)
 }
 }
}
.scrollTargetBehavior(.paging)

With .paging, the ScrollView will snap to each page, aligning it to the visible area. If you want to align
based on individual views rather than full pages, you can use .viewBased instead.

View-Based Paging

For a more granular control, where you want to snap to specific views within your ScrollView, use
the .viewBased option. This is particularly useful when you have a grid or a collection of items that you
want to align individually. Here’s how you can implement view-based paging with the grid example from
the earlier section:

ScrollView(.horizontal) {
 LazyHGrid(rows: rows, spacing: padding) {
 ForEach(inspirations) { inspiration in
 InspirationRowView(inspiration: inspiration,
 imageSize: imageSize)
 .containerRelativeFrame(.horizontal) { length, axis in
 length - padding * 2 - imageSize * 0.5
 }
 }
 }
 .padding(padding)
 .scrollTargetLayout()
}
.scrollTargetBehavior(.viewAligned)

To enable the view-based behavior, you’ll need to do two things:

• Add a scrollTargetLayout modifier to the views you want to align to.

• Wrap your ScrollView with a scrollTargetBehavior modifier.

2 2 0

Now, when the user scrolls and releases, the ScrollView will snap to the start of each individual view/
column, providing a more precise and controlled scrolling experience.

9 . 6 P R O G R A M M AT I C S C R O L L I N G W I T H
S C R O L LV I E W R E A D E R

When dealing with long lists in a ScrollView, a common requirement is to programmatically scroll to a
specific position. In iOS 17, SwiftUI introduced a new scroll position modifier that allows both
programmatic scrolling and reading the scroll position. This feature is incredibly handy, and I’ll be
showing you plenty of examples. However, for versions below iOS 17, we have to rely on the
ScrollViewReader, which only supports programmatic scrolling without the ability to read the current
scroll offset.

Let’s dive into the ScrollViewReader. You’ll need to wrap your ScrollView with a ScrollViewReader to
access its functionality. The ScrollViewReader provides you with a proxy that has methods for
programmatic scrolling. Here’s how you can use it:

struct ScrollViewReaderExampleView: View {
 let emojis = Emoji.examples()

 var body: some View {
 ScrollViewReader(content: { proxy in
 ScrollView {
 LazyVStack {
 ForEach(emojis) { emoji in
 GroupBox {
 Text(emoji.emojiSting)
 .font(.title)
 Text("\(emoji.value)")
 .frame(maxWidth: .infinity)
 }
 }

2 21

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/9-6-programmatic-scrolling-with-scrollviewreader
https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/9-6-programmatic-scrolling-with-scrollviewreader

 }
 }

 Button("scroll to 😡 ", action: {

 proxy.scrollTo(128545)
 })

 })
 }
}

In this example, I’m using emojis as the data to scroll through. I’ve made the emojis identifiable by their
value.

struct Emoji: Identifiable {
 let value: Int

 var emojiSting: String {
 guard let scalar = UnicodeScalar(value) else { return "?" }
 return String(Character(scalar))
 }

 var id: Int {
 return value
 }
}

 You use the same id when you call the ScrollViewReader´s proxy to scrollTo position. When you use the
scrollTo method, the ScrollView jumps to the specified ID. If you want a smooth, animated scroll, you can
wrap the scrollTo call in an withAnimation block:

Button("Scroll to 😡 ") {
 withAnimation(.easeInOut(duration: 2)) {
 proxy.scrollTo(128545)
 }
}

By default, scrollTo will scroll just enough to make the view visible. If you’re below the target view, it will
appear at the top of the ScrollView. If you’re above it, it will stop as soon as the view comes into view.
You can control this behavior using the anchor parameter to specify where you want the view to align
within the ScrollView.

For example, if you want the view to always appear at the top, you can set the anchor to .top. If you
prefer it to be centered, use .center.

Button("Scroll to 😡 ") {
 withAnimation(.easeInOut(duration: 2)) {
 proxy.scrollTo(128545, anchor: .center)
 }
}

2 2 2

How does ScrollView know which view to scroll to?

When you’re working with a ScrollView and you want to programmatically scroll to a specific view, you
might wonder how the ScrollView knows which view to target. The answer lies in the use of identifiers, or
IDs, which are unique values assigned to the views within the ScrollView.

For dynamic content, such as a list generated from an array, each element in the array should conform
to the Identifiable protocol. This means each element has a unique id property. SwiftUI uses this id to
distinguish between views:

ForEach(emojis) { emoji in
 Text(emoji)
 .id(emoji.id)
 // per default this is added with identifiable data in ForEach
}

For static content or when you’re not using identifiable data, you can manually assign IDs to views using
the .id(_:) modifier. This modifier takes a hashable value that you designate as the identifier for that view.
In the following, I added a text view with an id of “11”:

ScrollView {
 LazyVStack {
 ForEach(emojis) { emoji in
 ...
 }

 Text("Finish")
 .id(11)
 }
}

2 2 3

You can then scroll to this view with:

Button("Scroll to end") {
 proxy.scrollTo(11, anchor: .center)
}

SwiftUI automatically assigns an id to each view. You can use the internal ids be using the namespace:

@Namespace var bottomID

Text("Finish")
 .id(bottomID)

Remember, the ScrollViewReader doesn’t provide information about the current scroll position. For that,
we’ll explore the new scroll position modifier in the next lesson, which is available in iOS 17 and later.

9 . 7 S C R O L LV I E W P O S I T I O N

In this section, we’re going to explore the ScrollView position, a feature introduced in iOS 17 that allows
us to control and observe the scroll position within a ScrollView. I’ll be reusing the same view from the
previous example so that you can compare the old and new methods side by side.

struct ScrollPositionExampleView: View {
 let emojis = Emoji.examples()
 @State private var scrollID: Int? = nil

 var body: some View {
 ScrollView {
 LazyVStack {
 ForEach(emojis) { emoji in
 GroupBox {
 Text(emoji.emojiSting)
 .font(.title)
 Text("\(emoji.value)")
 .frame(maxWidth: .infinity)
 }
 }
 }
 .padding()
 .scrollTargetLayout()
 }
 .scrollPosition(id: $scrollID, anchor: .center)
 }
}

Now, let’s get to the main point: scrolling. This is done using the scrollPosition modifier, which requires a
binding. A binding is two-way; you can set it and read from it. This is why it works so well.

2 2 4

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/9-7-scrollview-postion

Displaying the Scroll Position

To display the current scroll position, I’ll add a title text within the safe area that shows the scrollID. Since
scrollID is optional, I’ll display zero if it’s nil.

struct ScrollPositionExampleView: View {
 let emojis = Emoji.examples()
 @State private var scrollID: Int? = nil

 var body: some View {
 ScrollView {
 LazyVStack {
 …
 }
 .padding()
 .scrollTargetLayout()
 }
 .scrollPosition(id: $scrollID, anchor: .center)
 .background(Color.indigo)
 .safeAreaInset(edge: .bottom, content: {
 Text("Scroll Postion \(scrollID ?? 0)")
 .font(.title).bold()
 .frame(maxWidth: .infinity)
 .padding()
 .background(.thinMaterial)
 })

 }
}

If you want to observe changes to the scroll position as you manually scroll, you’ll need to use the
scrollTargetLayout modifier. Without it, the property won’t update as you scroll.

2 2 5

I used the anchor of center which will track the scroll view row in the center. You can see the same id
shown in the rows as in the safe area insets at the bottom.

Programmatically Scrolling

To scroll to a specific item, I’ll change the scrollID state property. For example, if I want to scroll to the
item with the emoji 😡 which has an id of 128545, I’ll set scrollID to that value:

@State private var scrollID: Int? = nil

…

Button("scroll to 😡 ”, action: {
 withAnimation(.easeInOut(duration: 2)) {
 scrollID = 128545
 }
})

Since iOS 17 you can now use the scrollPosition modifier to control and observe the scroll position in
your ScrollView. In the next lesson, I’ll show you more advanced examples, including how to sync two
scroll views together using the scroll position.

9.8 Synchronizing Multiple ScrollViews

In this section, I’m going to walk you through an advanced layout technique in SwiftUI where we can
synchronise the scrolling behaviour of multiple views. I am going to use the scroll position modifier for
this.

Example: Image ScrollView with Preview Grid

Imagine you have a main ScrollView displaying content horizontally and below it you show a grid of all
images that act as a preview. We want these two to be in sync, so when you interact with one, the other
reflects the changes accordingly. For example, the preview grid should highlight the currently shown
image on top. When the user taps on one of the preview images, the top scroll view should scroll to this
image.

Let’s start by setting up the top scroll view. The images should fit the width of the screen which I
accomplish with containerRelativeFrame:

struct DoubleScrollExampleView: View {
 let inspirations = NatureInspiration.examples()
 @State private var id: UUID? = nil

 var body: some View {
 VStack {
 ScrollView(.horizontal) {
 LazyHStack(spacing: 0) {
 ForEach(inspirations) { inspiration in
 ImageAspectView(imageName: inspiration.imageName,

2 2 6

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/9-7-scrollview-postion/topics/9-8-synchronizing-multiple-scrollviews

 frameAspectRatio: 1.5)
 .containerRelativeFrame(.horizontal)
 }
 }
 .scrollTargetLayout()
 }
 .scrollTargetBehavior(.paging)
 .scrollPosition(id: $id)
 .scrollIndicators(.hidden)
 .fixedSize(horizontal: false, vertical: true)
 .onAppear {

 id = inspirations.first?.id
 }

 // >>> preview grid
 }
}

I use the scrollPosition modifier to access the current scroll position. During onAppear of this scroll view
the state property for the scroll position is set to the first image in the data array. Additionally, the
scrollview uses paging target behavior.

Now, let’s implement a smaller grid image for preview purposes. This grid will be a visual representation
of the thumbnails that the user can interact with. To highlight the currently visible image, we’ll add an
overlay to the thumbnail grid.

ScrollView {
 LazyVGrid(columns: [GridItem(.adaptive(minimum: 100),
 spacing: 5)],

2 2 7

 alignment: .center,
 spacing: 5, content: {
 ForEach(inspirations) { inspiration in
 ImageAspectView(imageName: inspiration.imageName,
 frameAspectRatio: 1.2)
 .overlay {
 if inspiration.id == self.id {
 Color(white: 1, opacity: 0.5)
 Rectangle().stroke(Color.white, lineWidth: 5)

 }
 }
 .onTapGesture {
 // set selected image
 id = inspiration.id
 }
 }
 })

}

To synchronize the scroll positions, we’ll add tap gestures to each thumbnail image that will
programmatically scroll the main image into view. This can be done by setting the state property id to the
tapped image. This state property is connected to the top scroll view via the scrollPosition modifier.

We can also add the option to animate the scrolling for a smoother user experience. This can be done
using the withAnimation block:

.onTapGesture {
 withAnimation {
 id = inspiration.id
 }
}

By following these steps, we’ve set up a basic synchronized scrolling system between our main content
view and our thumbnail preview grid.

Example: Scrolling a ScrollView when another ScrollView is scrolled by the user

I am going to modify the previous example. I still want to have the top horizontal scroll view. Additionally, I
want another horizontal scroll view below that shows 3 image previews at a time.

2 2 8

When the user scrolls in the top scroll view, I want to show the corresponding section in the lower
preview scroll view. That means when I scroll right and the top image moves further than the currently
shown images below, I will programmatically scroll the bottom scroll view by 3 positions.

Similarly, when I scroll left, I also want to sync the bottom preview scroll view and move the scroll position
programmatically by 3 positions:

I first need to change the preview image area to use a horizontal scroll view:

struct SyncTwoScrollViewsExample: View {

 let inspirations = NatureInspiration.examples()
 @State private var topSelectedImage:NatureInspiration? = nil
 @State private var bottomSelectedImage:NatureInspiration? = nil

 let numberOfColumns = 3

 var body: some View {
 VStack {
 ScrollView(.horizontal) {
 LazyHStack(spacing: 0) {
 …
 }
 .scrollTargetLayout()
 }
 .scrollTargetBehavior(.paging)
 .scrollPosition(id: $topSelectedImage)

 ScrollView(.horizontal) {
 LazyHStack {
 ForEach(inspirations) { inspiration in
 ImageAspectView(imageName: inspiration.imageName,
 frameAspectRatio: 1.2)
 .id(inspiration)
 .overlay {
 if topSelectedImage == inspiration {
 Color(white: 1, opacity: 0.5)
 Rectangle().stroke(Color.white,
 lineWidth: 5).padding(2)
 }
 }
 .onTapGesture {

2 2 9

 topSelectedImage = inspiration
 }
 .containerRelativeFrame(.horizontal,
 count: numberOfColumns,
 spacing: 10)
 }
 }
 }
 .scrollTargetBehavior(.paging)
 .scrollPosition(id: $bottomSelectedImage)
 .scrollIndicators(.hidden)
 }
 .background(Color.black)
 }
}

To synchronize our ScrollViews, we need to track the currently selected image in each view. I use two
different state properties for this purpose. Unfortunately, scrollPosition does not work if I use the same
state property to multiple scroll views.

@State private var topSelectedImage: NatureInspiration? = nil
@State private var bottomSelectedImage: NatureInspiration? = nil

To use the NatureInspiration type with the scrollPosition, it needs to conform to Hashable:

struct NatureInspiration: Identifiable, Hashable {
 …
}

When our view appears, we want to set the initial selected images for both ScrollViews.

.onAppear {
 topSelectedImage = inspirations.first
 bottomSelectedImage = inspirations.first
}

Now comes the hard part of synchronising these two scroll position state properties. I use a onChange
modifier for topSelectedImage to programmatically change the bottom scroll view position:

struct SyncTwoScrollViewsExample: View {
 @State private var topSelectedImage:NatureInspiration? = nil
 @State private var bottomSelectedImage:NatureInspiration? = nil

 var body: some View {
 VStack {
 ScrollView(.horizontal) {
 // large images
 }
 .scrollPosition(id: $topSelectedImage)

 ScrollView(.horizontal) {
 // preview images
 }

2 3 0

 .scrollPosition(id: $bottomSelectedImage)

 }
 .background(Color.black)
 .onAppear {
 topSelectedImage = inspirations.first
 bottomSelectedImage = inspirations.first
 }
 .onChange(of: topSelectedImage) { oldValue, newValue in
 guard let newValue,
 let topIndex = inspirations.firstIndex(of: newValue) else {
 return
 }

 let index = topIndex % numberOfColumns

 if index == 0 {
 // programmatically scroll right >>
 withAnimation {
 self.bottomSelectedImage = newValue
 }
 } else if index == numberOfColumns - 1 {
 // programatically scroll left <<
 withAnimation {
 let leadingIndex = topIndex - numberOfColumns + 1
 self.bottomSelectedImage = inspirations[leadingIndex]
 }
 }
 }
 }
}

To determine when to scroll the other ScrollView, we’ll calculate the current column index based on the
selected image.

let index = topIndex % numberOfColumns

If the index is zero, I know that the selected image should be the image on the right. If I set the bottom
selected image to that image, I scroll to the next section.

If the index is the last column index, I can scroll left. I need to find the image of the first column in this
section:

let leadingIndex = topIndex - numberOfColumns + 1
self.bottomSelectedImage = inspirations[leadingIndex]

I used the numberOfColumns from the bottom scroll view to find the correct positions. Therefore the
above implementation also works for other scroll view settings like 4 or 5 columns.

In this example, we’ve explored advanced techniques to synchronize multiple ScrollViews. We’ve seen
how to manage state, use the onChange modifier, and calculate scroll positions to customize the scroll
synchronisation.

2 31

Key Takeaways

• State Tracking: We’ve learned how to use state properties to track scroll positions and selected items.

• OnChange Modifier: We’ve utilized the onChange modifier to synchronize scrolling between multiple
ScrollViews.

• Identifiable Views: We’ve discussed the importance of using IDs to identify views for programmatic
scrolling.

• SwiftUI’s ScrollView API: We’ve recognized the power and flexibility of SwiftUI’s ScrollView API for
creating complex, synchronized layouts.

9.9 Default Scroll Position

When you’re working with a ScrollView in SwiftUI, you might want to control the initial scroll position
when the view appears. This is particularly useful if you want your users to start at a specific point in your
content, rather than at the top. As of iOS 17, SwiftUI provides a handy modifier for this purpose:
defaultScrollAnchor. Let’s dive into how you can use this to set the default scroll position.

Using defaultScrollAnchor

Imagine you have a ScrollView filled with emojis, and you want to control where the view starts when it
first appears. By default, a ScrollView starts at the beginning. However, with the defaultScrollAnchor
modifier, you can change this behavior. Here’s how you can use it:

ScrollView {
 ...
}
.defaultScrollAnchor(.top)

The defaultScrollAnchor modifier accepts a UnitPoint value, such as .bottom, .top, .leading, .trailing,
or .center. The direction of your ScrollView (horizontal or vertical) will determine which values make sense
to use. For a vertical ScrollView, you’ll typically use .top, .bottom, or .center.

You can also specify a percentage to fine-tune the initial position:

ScrollView {
 ...
}
.defaultScrollAnchor(.init(x: 0, y: 0.3))
// Scrolls to 30% in the y-direction

2 3 2

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/9-7-scrollview-postion/topics/9-9-default-scroll-position

Scrolling to a Specific View

What if you want to scroll to a specific view within your ScrollView, like a particular emoji? In that case,
defaultScrollAnchor might not be the best choice. Instead, you can use the same strategy as before with
the scrollPosition modifier. Here’s an example:

struct InitialScrollPositionExampleView: View {
 let emojis: [Emoji]
 @State private var scrollID: Int? = nil

 var body: some View {
 ScrollView {
 LazyVStack {
 …
 }
 }
 .scrollPosition(id: $scrollID, anchor: .center)
 .onAppear {
 scrollID = 128545
 }
 }
}

In this example, you start with a nil value for scrollID. Then, in the .onAppear modifier, you set scrollID to
the ID of the emoji you want to scroll to. This will cause the ScrollView to start at the specified emoji.

2 3 3

You might be tempted to set the scrollID in the initializer of your view, but this approach won’t work as
expected. The onAppear method is a reliable place to set the initial scroll position when dealing with
dynamic data.

2 3 4

9 .10 S C R O L LV I E W A N I M AT I O N S W I T H S C R O L LT R A N S I T I O N

In this section, I’m diving into scroll animations in SwiftUI. iOS 17 introduced some powerful new
modifiers, including scrollTransition. This modifier makes it very easy to animate views appearing and
disappearing inside ScrollView. But that’s not all—if you’re aiming for more intricate effects, like parallax,
you’ll want to explore the visualEffects modifier.

The real challenge here is restraint. It’s tempting to go wild with animations, but the key is subtlety. Let’s
start with scrollTransition and see how to create tasteful animations.

Imagine you have an array of inspiration cards laid out in a vertical stack. You’re using a ScrollView in its
default vertical orientation. Now, you want these cards to fade out gracefully as they leave or enter the
viewport. This is where scrollTransition comes into play.

You can attach the scrollTransition modifier to each view within your ScrollView. Here’s how you might set
up a fading animation:

struct ScrollTransitionExampleView: View {
 let inspirations = NatureInspiration.examples()
 var body: some View {
 ScrollView {
 ForEach(inspirations) { inspiration in
 InspirationCard(inspiration: inspiration)
 .scrollTransition { effect, phase in
 effect
 .opacity(phase.isIdentity ? 1 : 0)
 .scaleEffect(phase.isIdentity ? 1 : 0.8)
 }
 }
 }
 .contentMargins(10)
 }
}

2 3 5

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/9-10-animations-with-scrolltransition

From the definition of the scrollTransition modifier, you can see that you have a lot of parameter
customisations available:

scrollTransition(_ configuration: ScrollTransitionConfiguration = .interactive,
 axis: Axis? = nil,
 transition: (EmptyVisualEffect, ScrollTransitionPhase)
 -> some VisualEffect)

Changing the Timing of the Animation

The configuration of the scroll transition allows you to change the animation timing. The options for
ScrollTransitionConfiguration are:

• Identity: this will use the identity of the view and thus not show an animation

• Animated: animates the appearance of the view when it leaves the scroll view. You can choose the
timing of the animation like .animated(.bouncy)

• Interactive: synchronizes the animations with the user interaction during scrolling. This is the default
setting.

For example, a scroll transition where the views are animated with a bouncy timing curve:

.scrollTransition(animated(.bouncy) { effect, phase in
 effect.opacity(phase.isIdentity ? 1 : 0)
}

You can also set a transition where the top leading views will have an animation and the bottom trailing
views use identity :

.scrollTransition(topLeading: .animated(.bouncy),
 bottomTrailing: .identity) { effect, phase in
 effect.opacity(phase.isIdentity ? 1 : 0)
}

Setting the Transition

The transition closure gives you access to the EmptyVisualEffect and the ScrollTransitionPhase. The
EmptyVisualEffect represents the view that you are modifying. It’s similar to other modifiers you may
have used before. However, not all modifiers are allowed within a scroll view. For example, you cannot
use modifiers that change the layout of the view, such as padding or frames. These modifiers are not
allowed because they would affect the layout of the other views in the scroll view, causing potential
issues with scrolling.

2 3 6

Instead, you can use effects like scale effect, rotation effect, blur, brightness, or opacity. These effects
don’t change the layout or sizing of the view but rather alter the visual appearance. For example, you can
scale down a view as it scrolls out, or fade its opacity.

Inside the scrollTransition closure, you have access to the ScrollTransitionPhase. This gives you
information on where each view is inside the scroll view.

The scroll transition phase is an enum with three cases:

• top leading: views that are moving in/out in regards to the top leading edge of the scroll View

• identity: The identity case represents the view in the middle, where no animation is applied.

• bottom trailing: views that are moving in/out in regards to the bottom trailing area of the scroll View

For example, if you want to calculate an offset that moves the top leading views to the left and the
bottom trailing views to the right:

func offset(phase: ScrollTransitionPhase) -> CGFloat {
 switch phase {
 case .topLeading:
 return -50
 case .identity:

2 3 7

 return 0
 case .bottomTrailing:
 return 50
 }
}

.scrollTransition { effect, phase in
 effect
 .offset(x: offset(phase: phase), y: 0)
}

ScrollTransitionPhase has a convenient property, which is value:

• top leading: value is equal -1

• identity: value is 0

• bottom trailing: value is equal to 1

Instead of a switch case statement, you can simplify the above function to:

func offset(phase: ScrollTransitionPhase) -> CGFloat {
 return phase.value * 50
}

In the above example, I set the offset differently for the top and bottom transition views. But oftentimes
you want to use the same transition. For example, with a fade in/ out animation. In this case it is easier by
using the isIdentity property like:

.scrollTransition { effect, phase in
 effect.opacity(phase.isIdentity ? 1 : 0)
}

Examples: Horizontal ScrollView with ScrollTransition

Now, let’s say you want to create a rotation effect. You can define a function that returns an angle based
on the phase:

func angle(for phase: ScrollTransitionPhase) -> Angle {
 Angle(degrees: (phase.isIdentity ? 0 : -15))
}

This will rotate the views as they enter and exit, creating a dynamic visual effect.

2 3 8

ScrollView(.horizontal) {
 LazyHStack {
 ForEach(inspirations) { inspiration in
 InspirationCard(inspiration: inspiration,
 frameAspectRatio: 0.5)
 .scrollTransition { effect, phase in
 effect
 .scaleEffect(phase.isIdentity ? 1 : 0.9)
 .opacity(phase.isIdentity ? 1 : 0)
 .rotation3DEffect(angle(for: phase),
 axis: (x: 1, y: 0, z: 0),
 anchor: .top)
 }
 .containerRelativeFrame(.horizontal,
 count: 11,
 span: 3,
 spacing: 10.0)
 }
 }
}
.contentMargins(10)

You can also generate a cinema transition effect like:

I am animating the opacity, scale and rotation of the views:

ScrollView(.horizontal) {
 LazyHStack(spacing: 0) {
 ForEach(inspirations) { inspiration in
 InspirationCard(inspiration: inspiration,
 frameAspectRatio: 1.5)
 .id(inspiration.id)
 .scrollTransition { effect, phase in
 effect
 .opacity(phase.isIdentity ? 1 : 0.5)
 .scaleEffect(phase.isIdentity ? 0.95 : 1.05)
 .rotation3DEffect(Angle(degrees: phase.value * -15),
 axis: (x: 0, y: 1, z: 0),
 anchor: .center)
 }
 .containerRelativeFrame(.horizontal,
 count: 11,
 span: 8,
 spacing: 10.0)
 }
 }
}
.contentMargins(10)
.scrollPosition(id: $scrollID, anchor: .center)

2 3 9

.onAppear(perform: {
 scrollID = inspirations[1].id
})

This effect looks best when one view is cantered in the scroll view. Therefore I need to set the scroll
position away from the leading edge. In this case, I use again the scroll position modifier to
programmatically scroll to the second image in the array:

.scrollPosition(id: $scrollID, anchor: .center)

.onAppear(perform: {
 scrollID = inspirations[1].id
})

As you experiment with scrollTransition, remember to keep the animations subtle. A gentle fade, a slight
scale down, or a soft rotation can add a touch of elegance without overwhelming the user. The goal is to
enhance the scrolling experience, not detract from it.

In the next section, we’ll explore the visualEffects modifier, which opens up even more possibilities for
animating views within the scroll view. Get ready to take your animations to the next level!

2 4 0

9 .11 A N I M AT I O N S W I T H V I S U A L E F F E C T

In this section, we’re going to dive into some advanced animation techniques using the VisualEffect
modifier. This approach is akin to how I utilize the GeometryReader in the background to animate views
within a ScrollView. With VisualEffect, you’re provided with a GeometryProxy, which is crucial for knowing
the precise position of each view within a ScrollView. It requires iOS 17 or higher.

This isn’t limited to just the views at the top or bottom; it includes all the views in between, allowing for
smooth animations as they move through your ScrollView. This technique can also be leveraged to create
a parallax effect. But before we jump into these fancier examples, let’s set up a basic ScrollView to
understand how the VisualEffect modifier is used.

 I’ll start with a ScrollView and, for demonstration purposes, use a range of 0 to 100 to display a row with
an index number. To add some style, I’ll wrap each row in a GroupBox and apply a custom GroupBox
style we created earlier, the OrangeGroupBoxStyle. VisuelEffects gives you the view itself “content” and
the geomtryProxy:

ScrollView {
 ForEach(0..<100) { index in
 GroupBox {
 Text("Row \(index)")
 .frame(maxWidth: .infinity)
 }
 .groupBoxStyle(OrangeGroupBoxStyle())
 .visualEffect { content, geometryProxy in
 content
 }
 }
}

2 41

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/9-11-animations-with-visualeffect

Example: Animating Views with Offset

Initially, I’ll set up a basic animation that offsets the row by half the width of the GeometryProxy:

.visualEffect { content, geometryProxy in
 content
 .offset(x: offset(for: geometryProxy), y: 0)
}

I use the following function to calculate the offset. This function will take the GeometryProxy as an
argument and return a CGFloat, representing the offset in the x-direction (since we’re scrolling vertically):

func offset(for proxy: GeometryProxy) -> CGFloat {
 let scrollHeight = proxy.bounds(of: .scrollView)?.height ?? 100
 let cellOffset = proxy.frame(in: .scrollView).midY

 return cellOffset - scrollHeight / 2
}

To extract useful properties from the proxy, I can determine the cell height and the ScrollView’s height.
Then, I calculate the cell offset, which is the distance from the top of the ScrollView to the middle of the
cell. This gives me the information I need to create animations for individual views.

For instance, if a cell is exactly in the middle of the ScrollView, I don’t want it to offset. I can calculate this
by checking if the cell offset is half the ScrollView’s height. Using this logic, I can apply an x-offset to
move the cells horizontally, creating a dynamic effect as they scroll.

Example: Animating Views with Opacity

Next, let’s calculate an opacity value. The cell in the middle of the ScrollView should be the brightest,
while others become more opaque.

.visualEffect { content, geometryProxy in
 content
 .opacity(opacity(for: geometryProxy))
}

This requires similar calculations to those used for the offset, but now I’m interested in the distance from
the center in terms of percentage. I’ll use this percentage to adjust the opacity of each cell.

func opacity(for proxy: GeometryProxy) -> Double {
 let scrollHeight = proxy.bounds(of: .scrollView)?.height ?? 100
 let cellOffset = proxy.frame(in: .scrollView).midY
 let distanceFromCenter = abs(scrollHeight / 2 - cellOffset)

 return 1 - Double(distanceFromCenter / scrollHeight * 2)
}

2 4 2

Example: Animating Views with ScaleEffect

Additionally, we can apply a scale effect:

.visualEffect { content, geometryProxy in
 content
 .scaleEffect(scaleAmount(for: geometryProxy))
}

Similar to the example with the opacity, I want to make the views smaller the further away they are from
the center of the scroll view. The calculations are thus very similar and I create a reusable function that
calculates the distance from the center. The returned value is in a range from 0 to 1. I can amplify the
effect by increasing an additional scale factor:

func value(for proxy: GeometryProxy, scale: Double) -> Double {
 let scrollHeight = proxy.bounds(of: .scrollView)?.height ?? 100
 let cellOffset = proxy.frame(in: .scrollView).midY
 let distanceFromCenter = abs(scrollHeight / 2 - cellOffset)

 return 1 - Double(distanceFromCenter / scrollHeight * 2) * scale
}

func scaleAmount(for proxy: GeometryProxy) -> CGSize {
 let value = value(for: proxy, scale: 0.3)
 return CGSize(width: value, height: value)
}

By creating a function to calculate the scale amount based on the cell’s distance from the center, we can
make cells appear larger or smaller as they move through the ScrollView.

Example: 2-Dimensional Animations

Finally, let’s experiment with a dynamic data example using a two-dimensional array for a LazyVGrid. By
applying the VisualEffect modifier to each emoji view, we can create a shimmering effect as they scroll.

struct AnimatedLazyVGridExampleView: View {
 let emojis = Emoji.examples()

 var body: some View {
 ScrollView {
 LazyVGrid(columns: [GridItem(.adaptive(minimum: 80), spacing: 10)],
 alignment: .center,
 spacing: 10, content: {
 ForEach(emojis) {
 EmojiView(emoji: $0)
 .visualEffect { content, geometryProxy in
 content
 .opacity(opacity(for: geometryProxy))
 }
 }
 })

2 4 3

 .padding()
 }
 .background(Color.black)
 }

 func value(for proxy: GeometryProxy, scale: Double) -> Double {
 let scrollHeight = proxy.bounds(of: .scrollView)?.height ?? 100
 let cellOffsetY = proxy.frame(in: .scrollView).midY
 let distanceFromCenterY = abs(scrollHeight / 2 - cellOffsetY)

 let scrollWidth = proxy.bounds(of: .scrollView)?.width ?? 100
 let cellOffsetX = proxy.frame(in: .scrollView).midX
 let distanceFromCenterX = abs(scrollWidth / 2 - cellOffsetX)

 return 1 - Double(distanceFromCenterX / scrollWidth) -
 Double(distanceFromCenterY / scrollHeight)
 }

 func opacity(for proxy: GeometryProxy) -> Double {
 return value(for: proxy, scale: 0.6)
 }
}

Remember, the key to these animations is understanding the position of each cell. The GeometryProxy
gives you access to a wealth of properties, including the bounds and frame of the ScrollView and the size
and position of each cell. With this information, you can create intricate animations that respond to the
scrolling behavior, enhancing the user experience.

In the next lesson, we’ll continue to explore the power of the VisuelEffects by using it to create advanced
animations for parallax effects.

2 4 4

9.12 Parallax Example

In this section, I’m going to show you how to implement some captivating parallax effects. We’ll work
through two examples to get a good grasp of the concept. You’ll notice in the first example, there are
cards with text and a description layered above. As you scroll, not only does the text move, but the
images also have a subtle motion, creating a dynamic visual experience.

Begin by setting up a horizontal ScrollView with an HStack. For each piece of inspiration data, display an
image with the correct aspect ratio. I am using containerRelativeFrame in the horizontal axis to ensure
that each of the sections is the same width as the scroll view:

struct ParallaxEffectView: View {
 let inspirations = NatureInspiration.examples()

 var body: some View {
 ScrollView(.horizontal) {
 HStack(spacing: 0) {
 ForEach(inspirations) { inspiration in
 VStack(spacing: 20) {
 VStack {
 Text(inspiration.name)
 .font(.title)
 Text(inspiration.description)
 .font(.caption)
 .multilineTextAlignment(.center)
 .lineLimit(2)
 }

 ImageAspectView(imageName: inspiration.imageName,
 frameAspectRatio: 1.5,
 cornerRadius: 15)
 .shadow(radius: 5)
 }
 .padding()
 .containerRelativeFrame(.horizontal)
 }
 }
 }
 .scrollTargetBehavior(.paging)
 }
}

2 4 5

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/9-11-animations-with-visualeffect/topics/9-12-parallax-example-1

Adding Text with Parallax

To create the parallax effect, we want the text to move at a different pace than the scroll view. To achieve
this, you’ll need to apply an offset to the VStack that contains the text. Use a visual effects modifier to
attach the desired effect to the text views:

ScrollView(.horizontal) {
 HStack(spacing: 0) {
 ForEach(inspirations) { inspiration in
 VStack(spacing: 20) {
 VStack {
 ...
 }
 .visualEffect { content, geometryProxy in
 content.offset(x: textOffset(for: geometryProxy),
 y: 0)
 }

 // image
 }
 }
 }
}

func textOffset(for proxy: GeometryProxy) -> CGFloat {
 let scrollWidth = proxy.bounds(of: .scrollView)?.width ?? 100
 let cellOffset = proxy.frame(in: .scrollView).midX

 return (cellOffset - scrollWidth / 2) * 0.6
}

Implementing the Image Parallax

The image parallax is a bit trickier. You want the image to move within its frame, but the frame itself
should remain static. After setting the image in place, use a clipShape with a RoundedRectangle to
define the visible area.

ImageAspectView(imageName: inspiration.imageName,
 frameAspectRatio: 2,
 cornerRadius: 0)
.padding(.horizontal, -70)
.visualEffect { content, geometryProxy in
 content.offset(x: imageOffset(for: geometryProxy),
 y: 0)
}
.clipShape(RoundedRectangle(cornerRadius: 15))
.shadow(radius: 5)

func imageOffset(for proxy: GeometryProxy) -> CGFloat {
 let scrollWidth = proxy.bounds(of: .scrollView)?.width ?? 100
 let cellOffset = proxy.frame(in: .scrollView).midX

 return (cellOffset - scrollWidth / 2) * 0.15
}

2 4 6

To ensure the image has enough area to move within the clipped frame, you might need to apply negative
padding. This is a quick trick to make the image larger without altering its actual size. Adjust the padding
and offset values until the image moves subtly within the frame, creating that gentle parallax effect.

To illustrate how the image is moving within the frame, I added a red border which represents the
clipShape:

The image area (red shape) is moving across the image. This gives the impression that the image is
moving within its card view.

In this example, I’ve demonstrated how to use visual effects modifiers to animate different elements
separately. By calculating the offsets based on the scroll view’s position, you can create a stunning
parallax effect for both text and images. With this approach, you have complete control over the
animation, allowing you to create a truly interactive and engaging user interface.

Remember, the key to a successful parallax effect is subtlety and precision. Take your time to adjust the
movements until everything works together harmoniously.

2 4 7

9.13 Background Parallax Effect

In this section, I’m going to show you how to create a parallax effect within a ScrollView using visual
effects. Imagine you have a set of nature-inspired data, including titles and text, and you want to add a
background image that moves subtly as you scroll horizontally. Let’s dive into implementing this
animation.

First, create a new file named BackgroundParallaxEffectView. You’ll use the same inspiration data as
before. Inside, place a horizontal ScrollView that contains your titles and text. It’s crucial to maintain a
clean structure, so avoid excessive nesting and ensure your cells are appropriately sized. Utilize the
containerRelativeFrame in the horizontal direction and set the scroll target behavior to paging for a
smooth scrolling experience.

struct BackgroundParallaxEffectView: View {
 let inspirations = NatureInspiration.examples()

 var body: some View {
 ScrollView(.horizontal) {
 HStack(spacing: 0) {
 ForEach(inspirations) { inspiration in
 VStack {
 Text(inspiration.name)
 .font(.title)
 Text(inspiration.description)
 .multilineTextAlignment(.center)
 }
 .padding()
 .containerRelativeFrame(.horizontal)
 }
 }
 }
 .scrollTargetBehavior(.paging)
 }
}

Now, you want to add an image that will serve as the background of your ScrollView. You might think to
add it outside the ScrollView, but that won’t give you the desired effect. Instead, insert an image within
the ScrollView and set it to be resizable and fill the available space.

2 4 8

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/9-11-animations-with-visualeffect/topics/9-13-parallax-example-2

struct BackgroundParallaxEffectView: View {
 let inspirations = NatureInspiration.examples()

 var body: some View {

 ScrollView(.horizontal) {
 HStack(spacing: 0) {
 ForEach(inspirations) { inspiration in
 …
 }
 }
 .background(alignment: .leading) {
 Image(.leaves)
 .resizable()
 .scaledToFill()
 .containerRelativeFrame(.horizontal, { length, axis in
 length * 2
 })
 .visualEffect { content, geometryProxy in
 content.offset(x: imageOffset(for: geometryProxy),
 y: 0)
 }
 }
 }
 .scrollTargetBehavior(.paging)
 }

 func imageOffset(for proxy: GeometryProxy) -> CGFloat {
 let scrollPosition = proxy.bounds(of: .scrollView)?.minX ?? 0
 let offset = scrollPosition / CGFloat(inspirations.count - 1)
 return scrollPosition - offset
 }
}

To achieve the parallax effect, you need to calculate the image offset for the background image based on
the ScrollView’s current position.

In this example, I choose to align the background image to the leading edge:

 .background(alignment: .leading) {
 …
 .visualEffect { content, geometryProxy in
 content.offset(x: imageOffset(for: geometryProxy),
 y: 0)
 }
 }

If I then offset it by the ScrollView’s minimum X value. This makes it appear as if the background isn’t
moving when, in fact, it’s moving in sync with the ScrollView.

 func imageOffset(for proxy: GeometryProxy) -> CGFloat {
 let scrollPosition = proxy.bounds(of: .scrollView)?.minX ?? 0
 return scrollPosition
 }

To add a small additional offset that moves the background image, I add an additional offset value:

2 4 9

 func imageOffset(for proxy: GeometryProxy) -> CGFloat {
 let scrollPosition = proxy.bounds(of: .scrollView)?.minX ?? 0
 let offset = scrollPosition / CGFloat(inspirations.count - 1)
 return scrollPosition - offset
 }

This increases the total offset to 2 times the width of the background image width.

Make sure the background image is large enough to accommodate the movement. You can use the
containerRelativeFrame modifier to set the image’s width to be twice as large as the visible area.

.background(alignment: .leading) {
 Image(.leaves)
 .resizable()
 .scaledToFill()
 .containerRelativeFrame(.horizontal, { length, axis in
 length * 2
 })
 .visualEffect { content, geometryProxy in
 content.offset(x: imageOffset(for: geometryProxy),
 y: 0)
 }
}

After setting up the offset, you’ll see the background image moving slightly as you scroll through the
images.

By adding a resizable image to the background and calculating the offset based on the ScrollView’s
position, you create a beautiful parallax effect. Remember to keep the background image within the
ScrollView to get the correct geometry proxy information for the visual effects.

This visual effects modifier is quite handy, though it requires precise calculations to use effectively. With
this example, you’ve seen how to apply a parallax effect to a background image.

2 5 0

9 .14 P I N N E D V I E W S

In this section, I’ll show you how to create pinned views within a ScrollView that stick at the top as you
scroll, similar to what you might have seen in the Contacts app on your iPhone. This feature is particularly
useful when you want to categorize items and maintain the category header visible while scrolling through
the list.

Creating a Contact Model

First, let’s set up some data. Here’s a simple Contact struct:

struct Contact: Identifiable {

 let id: UUID = UUID()
 var name: String
 var phoneNumber: String

 static func examples() -> [Contact] {
 [
 Contact(name: "John Doe", phoneNumber: "123-456-7890"),
 Contact(name: "Jane Smith", phoneNumber: "987-654-3210"),
 Contact(name: "Alice Johnson", phoneNumber: "555-123-4567"),
 Contact(name: "Albert Johnson", phoneNumber: "555-123-4567"),
 Contact(name: "Andrew Johnson", phoneNumber: "555-123-4567"),
 Contact(name: "Bob Williams", phoneNumber: "111-222-3333"),
 Contact(name: "Eve Davis", phoneNumber: "999-888-7777"),
 Contact(name: "Frank Brown", phoneNumber: "444-333-2222"),
 Contact(name: "Grace White", phoneNumber: "888-777-6666"),
 Contact(name: "Hank Taylor", phoneNumber: "777-666-5555"),
 Contact(name: "Ivy Lee", phoneNumber: "666-555-4444"),
 Contact(name: "Kate Young", phoneNumber: "555-444-3333"),
 Contact(name: "Louis Miller", phoneNumber: "222-333-4444"),
 Contact(name: "Mary Adams", phoneNumber: "333-444-5555"),
]

2 51

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/9-14-pinned-views

 }
}

extension Contact: Comparable {
 static func < (lhs: Contact, rhs: Contact) -> Bool {
 lhs.name < rhs.name
 }
}

Implementing Pinned Headers

Now, let’s get to the exciting part. In your ScrollView, you’ll want to use a LazyVStack or LazyHStack
because they allow you to pin header views. Here’s how you can set up your alphabetized list:

struct PinnedHeadersScrollView: View {

 let contacts = Contact.examples()
 let alphabet: Set<Character> = Set("ABCDEFGHIJKLMNOPQRSTUVWXYZ")

 var body: some View {
 NavigationStack {
 ScrollView {
 LazyVStack(alignment: .leading,
 spacing: 10,
 pinnedViews: [.sectionHeaders]) {

 ForEach(alphabet.sorted(), id: \.self) { letter in
 Section {
 ForEach(contacts(for: letter)) { contact in
 NavigationLink(contact.name) {
 Text(contact.name)
 }
 .padding(.horizontal)
 }
 } header: {
 Text(String(letter))
 .font(.title)
 .padding()
 .frame(maxWidth: .infinity, alignment: .leading)
 .background(.thinMaterial)
 }

 }
 }
 }
 .navigationTitle("Contacts")
 }
 }

 func contacts(for letter: Character) -> [Contact] {
 contacts.filter({ $0.name.first == letter }).sorted()
 }
}

Notice how I’ve used a Section to group the contacts under their respective letter headers. The
LazyVStack initializer includes the pinnedViews parameter, where I’ve specified .sectionHeaders to pin
the headers.

2 5 2

ScrollView {
 LazyVStack(alignment: .leading,
 spacing: 10,
 pinnedViews: [.sectionHeaders]) {
 …
 }
}

Styling the Pinned Headers

To make the headers stand out and behave like those in the Contacts app, you’ll need to add some
styling. Here’s how you can give the headers a background and ensure they’re nicely formatted:

Section {
 ForEach(contacts(for: letter)) { contact in
 …
 }
} header: {
 Text(String(letter))
 .font(.title)
 .padding()
 .frame(maxWidth: .infinity, alignment: .leading)
 .background(.thinMaterial)
}

This will give your headers a translucent background, similar to the blur effect in iOS, and ensure they
span the entire width of the screen.

Remember, you can only pin section headers or footers, and you need to use a Section to let the system
know which views to pin. With a bit of styling, you can quickly create a professional-looking list with
pinned views.

2 5 3

C H A L L E N G E 🖐 S C R O L LV I E W

You’ve been working on the Pet Pal app, particularly on the gallery view. However, there are a couple of
screens that could use a bit more excitement, considering we’re dealing with pets here. We want to add
fun animations and improve the layout to make it more engaging.

When you tap on one of the cards in the gallery view, you’re taken to the pet detail view. For the images, I
added a horizontal ScrollView with a LazyHStack and a spacing of one, creating a subtle separation
between the images. I included padding around the content to avoid the images being cut off at the
edges, which I find unappealing.

struct PetDetailView: View {

 let pet: Pet
 @Binding var favoriteImages: Set<String>

 var body: some View {
 ScrollView {
 VStack(alignment: .leading) {
 ScrollView(.horizontal) {
 LazyHStack(spacing: 1) {
 ForEach(pet.images, id: \.self) { imageName in
 Image(imageName)
 .resizable()
 .scaledToFit()
 .overlay(alignment: .topTrailing) {
 FavoritePetButton(imageName: imageName,
 favoriteImages: $favoriteImages)
 .padding()
 }
 .scrollTransition { contentView, phase in
 contentView.opacity(phase.isIdentity ? 1 : 0.5)

2 5 4

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/%F0%9F%96%90%EF%B8%8F-challenge

 }
 }
 }
 .scrollTargetLayout()
 }
 .scrollClipDisabled()
 .scrollTargetBehavior(.viewAligned)
 .contentMargins(-10, for: .scrollIndicators)
 .containerRelativeFrame(.vertical, { length, axis in
 length * 0.4
 })
 .padding(.bottom)
 .scrollIndicatorsFlash(onAppear: true)

 Text("Interesting Facts:")
 …
 }
 .padding([.horizontal, .bottom])
 }
 #if os(iOS)
 .navigationBarTitle(pet.type.rawValue.capitalized)
 #endif
 }
}

I used the petsImages array for the content, and since these are string values, I had to use id: \.self. Each
image is displayed using a resizable view that is scaled to fit. I prefer this because it maintains the
different aspect ratios, which is particularly nice for varied images like those of fish.

I also implemented scroll target behavior with view alignment. This ensures the images don’t touch the
edges too much, which I think looks better. I added some scroll transition effects, like opacity changes,
to subtly highlight the images as they come into view.

I set the height of the image column to 40% of the available space, ensuring it scales nicely with different
screen sizes. This excludes the toolbar area, so it’s 40% from the top of the view to the bottom.

.containerRelativeFrame(.vertical, { length, axis in
 length * 0.4
 })

2 5 5

C U S T O M P I C K E R V I E W C H A L L E N G E

ScrollView is very powerful and with the addition of scrollPosition more advanced use cases are possible.
You can for example create the following color picker:

The basic is a vertical scroll view that shows a range of colors. You can use color from hue to easily
iterate over different colors:

ScrollView {
 LazyVStack(spacing: 1) {
 ForEach(0..<21) { index in
 ColorRow(hueValue: index)
 .frame(height: 20)
 }
 }
}
.aspectRatio(1, contentMode: .fit)

Next, you can create a state property to track the selected color and bind it to the scroll view position:

@State private var selectedColorIndex: Int? = nil

ScrollView {
 LazyVStack(spacing: 1) {
 ForEach(0..<21) { index in
 ColorRow(hueValue: index)
 .frame(height: 20)
 .id(index)
 .overlay {
 if index == selectedColorIndex {
 Rectangle()
 .stroke(Color.black, lineWidth: 3)
 }
 }

2 5 6

 }

 }
 .scrollTargetLayout()
}
.scrollPosition(id: $selectedColorIndex, anchor: .center)

I need to add space before and after the ForEach to allow over-scrolling. The user can thus also select
colors at the beginning and end of the scroll view. Since I use an aspect ratio of 1 for the scroll view and I
need to add a white area with half the scroll view heigh, I can use white placeholders like:

ScrollView {
 LazyVStack(spacing: 1) {
 Color.white
 .aspectRatio(2, contentMode: .fit)

 ForEach(0..<21) { index in
 …
 }

 Color.white
 .aspectRatio(2, contentMode: .fit)
 }
 .padding()
 .scrollTargetLayout()
}
.scrollPosition(id: $selectedColorIndex, anchor: .center)
.aspectRatio(1, contentMode: .fit)

I am also using visuelEffect to make it look more like the default wheel picker in SwiftUI:

ForEach(0..<21) { index in
 ColorRow(hueValue: index)
 .frame(height: 20)
 .id(index)
 .overlay {
 if index == selectedColorIndex {
 Rectangle()
 .stroke(Color.black, lineWidth: 3)
 }
 }
 .zIndex(index == selectedColorIndex ? 100 : 1)
 .visualEffect { content, proxy in
 content
 .opacity(opacity(for: proxy))
 }
}

func opacity(for proxy: GeometryProxy) -> Double {
 let scrollViewHeight = proxy.bounds(of: .scrollView)?.height ?? 100
 let rowCenterPosition = proxy.frame(in: .scrollView).midY
 let distanceFromScrollCenter = abs(scrollViewHeight / 2 - rowCenterPosition)

 return 1 - Double(distanceFromScrollCenter / scrollViewHeight) * 2
}

2 57

You can also extend this to a 2 dimension grid, where the user can scroll in vertical and horizontal
direction. I am varying the hue in y-direction. In x-direction I am showing colors with different brightness
and saturation:

The color model and sample data is:

struct CustomColor: Identifiable, Hashable {
 let hue: CGFloat
 let saturation: CGFloat
 let brightness: CGFloat
 let id = UUID()

 static func spectrum() -> [CustomColor] {
 let brightnessDistance = 0.1
 let hueDistance = 0.05
 let brightnessValues = Array(stride(from: 0.0,
 through: 1.0,
 by: brightnessDistance))
 let hueValues = Array(stride(from: 0.0,
 through: 1.0,
 by: hueDistance))

 var results = [CustomColor]()

 for hueValue in hueValues {
 let row = brightnessValues.map { CustomColor(hue: hueValue,
 saturation: 1,
 brightness: $0)}

 results.append(contentsOf: row)

 let rowEnd = brightnessValues.map { CustomColor(hue: hueValue,
 saturation: $0,

2 5 8

 brightness:
1)}.reversed().dropFirst()

 results.append(contentsOf: rowEnd)

 }

 return results
 }
}

The custom color picker will use LazyVGrid and scroll position:

struct GridColorPickerView: View {

 @State private var selectedColor: CustomColor? = nil
 let colorOptions = CustomColor.spectrum()
 let colorSize: CGFloat = 30

 var body: some View {

 ScrollView([.horizontal, .vertical]) {
 LazyVGrid(columns: Array(repeating: GridItem(.fixed(colorSize),
 spacing: 0),
 count: 21),
 spacing: 0) {

 ForEach(colorOptions) { color in
 ZStack {
 if color == selectedColor {
 RoundedRectangle(cornerRadius: 5)
 .fill(Color.white)
 .padding(-5)
 }

 Color(hue: color.hue,
 saturation: color.saturation,
 brightness: color.brightness)
 .cornerRadius(2)
 }
 .shadow(radius: 1)
 .frame(height: colorSize)
 .id(color)
 .zIndex(color == selectedColor ? 1 : 0)
 .visualEffect { content, proxy in
 content
 .scaleEffect(scaleAmount(for: proxy))
 }
 }
 }
 .padding(170)
 .scrollTargetLayout()
 }
 .scrollPosition(id: $selectedColor, anchor: .center)
 .aspectRatio(1, contentMode: .fit)
 .padding(.top)
 .onAppear {
 selectedColor = colorOptions[colorOptions.count / 2]
 }
 }

 func scaleAmount(for proxy: GeometryProxy) -> Double {
 let scrollViewHeight = proxy.bounds(of: .scrollView)?.height ?? 100

2 5 9

 let rowCenterPositionY = proxy.frame(in: .scrollView).midY
 let distanceFromScrollCenterY = abs(scrollViewHeight / 2 -
 rowCenterPositionY)

 let scrollViewWidth = proxy.bounds(of: .scrollView)?.width ?? 100
 let rowCenterPositionX = proxy.frame(in: .scrollView).midX
 let distanceFromScrollCenterX = abs(scrollViewWidth / 2 - rowCenterPositionX)

 return 1.1 - (Double(distanceFromScrollCenterX / scrollViewWidth) +
 Double(distanceFromScrollCenterY / scrollViewHeight)) * 0.75
 }
}

2 6 0

10 . A DA P T I V E L AYO U T

10 .1 W H Y YO U N E E D A DA P T I V E L AYO U T

When developing apps with SwiftUI, it’s crucial to consider how your views will appear across a variety of
devices. From the compact iPhone SE to the expansive screens of the iPhone 15 Pro Max, and even
cross-platform devices like the iPad Pro, WatchOS, and MacOS, each presents unique challenges due to
their different screen sizes.

The Challenge of Diverse Devices

In recent years, the complexity of adaptive layout has increased. Apps are now packed with more
features, screens, and additional functionality. Despite this complexity, we strive to maintain a clean and
appealing design. This becomes even more challenging when you consider supporting landscape mode
or dealing with split-screen views on iPads, where the available space can vary significantly.

Landscape Mode and Split Screen

Some native Apple apps, like the News app, don’t support landscape mode, as they’re typically used in
portrait orientation. Conversely, apps like YouTube benefit greatly from landscape support, enhancing the
video-watching experience. The decision to support various orientations and split-screen modes will
depend on the context of your app and the user’s needs.

2 61

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/10-1-why-you-need-adaptive-layout

Keyboard Considerations

Another aspect to consider is the keyboard. When it pops up, it can obscure content, especially on
smaller devices like the iPhone. It’s essential to ensure that text fields are not hidden behind the
keyboard, allowing users to see what they’re typing.

Dynamic Type and Accessibility

Dynamic type is another factor that can affect your layout. Users may adjust their preferred text size for
better readability, and your app’s design must adapt accordingly. Apple’s News app, for example, handles
this well by wrapping text to the next line and limiting the number of lines shown.

Design Strategies: Responsive vs. Adaptive

There are two main strategies for handling different screen sizes and scenarios: responsive design and
adaptive design.

- Responsive Design: This approach involves minor modifications to the layout to accommodate
different screen sizes. For instance, images may be resized while maintaining the same aspect ratio,
and text may be reflowed to fit the available space. The News app screenshots above are a good
example.

- Adaptive Design: This strategy involves more dramatic changes to the layout. Components may be
repositioned or replaced entirely to create a layout that is better suited to the available space. For
example, a VStack on a large screen might become a one-dimensional list on a smaller screen.

2 6 2

Navigation and Tab Views

Apple’s approach to adaptive design can be seen in apps like Finder, where on an iPad in portrait mode
a sidebar may slide in and out. On an iPhone, a NavigationSplitView might be presented as a
NavigationStack, while on an iPad, it could appear as a sidebar in a NavigationSplitView.

Throughout this section, I’ll review the principles of adaptive and responsive design, discuss the tools
available in SwiftUI, and provide strategies for tackling the variations across different devices. Remember,
the terms “adaptive” and “responsive” can sometimes be used interchangeably, and there’s a bit of a
gray area between them. If you find my usage differs from your understanding, I ask for your
understanding as these concepts can be nuanced.

In the upcoming sections, we’ll dive deeper into each of these topics, ensuring that you’re equipped to
create SwiftUI layouts that look fantastic on any device.

2 6 3

10 . 2 W H AT I S T H E AVA I L A B L E S PA C E

Let’s take a look at the different device sizes we have. I have attached a table below that lists all the
iPhones and their screen sizes, sorted by size in the vertical direction. The screen sizes are mentioned in
inches, and the logical resolution is given in points.

iPhone Screen Sizes

The smallest iPhone that supports iOS 17 is the iPhone SE (2nd & 3rd) generation and the largest is the
iPhone 15 Pro Max. When testing your designs, it is necessary to make sure that you consider the
smallest and largest screen sizes. Thus, the layout also works for the other screen sizes.

iPhone Screen Size
(Inches)

Logical Resolution
(Points)

Scale
Factor

Supports

up to

Portrait size

classes

Landscape

size classes

iPhone SE (1st
generation) 4.0

320 x 568 2 iOS 16 H: Compact,

V: Regular

H: Compact,

V: Compact

iPhone 6/6s/7/8 4.7 375 x 667 2 iOS 16 H: Compact,

V: Regular

H: Compact,

V: Compact

iPhone SE (2nd & 3rd
generation)

4.7 375 x 667 2 iOS 17 H: Compact,

V: Regular

H: Compact,

V: Compact

iPhone 6 Plus/6s
Plus/7 Plus/8 Plus

5.5 414 x 736 3 iOS 16 H: Compact,

V: Regular

H: Regular,

V: Compact

iPhone 12 mini /

iPhone 13 mini

5.4
 375 x 812 3 iOS 17 H: Compact,

V: Regular

H: Compact,

V: Compact

iPhone X/XS/11 Pro 5.8 375 x 812 3 iOS 17 H: Compact,

V: Regular

H: Compact,

V: Compact

iPhone 12/12 Pro
iPhone 13/13 Pro

iPhone 14

6.1 390 x 844 3 iOS 17 H: Compact,

V: Regular

H: Compact,

V: Compact

2 6 4

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/10-2-what-is-the-available-space

iPhone 14 Pro iPhone
15/15 Pro

6.1 393 x 852 3 iOS 17 H: Compact,

V: Regular

H: Compact,

V: Compact

iPhone XR/11 6.1 414 x 896 3 iOS 17 H: Compact,

V: Regular

H: Regular,

V: Compact

iPhone XS Max /

 11 Pro Max

6.5 414 x 896 3 iOS 17 H: Compact,

V: Regular

H: Regular,

V: Compact

iPhone 12 Pro Max /
iPhone 13 Pro Max /

iPhone 14 Plus

6.7 428 x 926
 3 iOS 17 H: Compact,

V: Regular

H: Regular,

V: Compact

2 6 5

Size Classes

Size classes play a crucial role in determining the available space on a device. In the iPhone’s portrait
mode, the vertical size class is regular, indicating ample vertical space. However, the horizontal size class
is compact, indicating limited horizontal space. These size classes are used by various UI elements, such
as navigation split views, to determine their layout.

Considering iPad Sizes

In addition to iPhones, we also need to consider the different sizes of iPads. The smallest iPad is the iPad
Mini, with a screen size of 7.9 inches, while the largest is the iPad Pro 12.9 inches.

Below you can find information about the size classes for different configurations, such as fullscreen and
split screen. These are used e.g. for NavigationSplitView configuration:

iPhone 14 Pro Max /

iPhone 15 Plus /

 15 Pro Max

6.7 430 x 932 3 iOS 17 H: Compact,

V: Regular

H: Regular,

V: Compact

iPad Screen Size (Inches) Logical Resolution (Points) Scale Factor

iPad Mini 4 7.9 768 x 1024 2

iPad mini (6th generation) 8.3 744 x 1133 2

iPad Pro (9.7-inch) 9.7 768 x 1024 2

iPad Air 2 10.9 768 x 1024 2

iPad Pro 10.5-inch 10.5 834 x 1112 2

iPad (9th generation) 10.2 810 x 1080 2

iPad Pro (12.9-inch) 12.9 1024 x 1366 2

2 6 6

Determining the Device in SwiftUI

In SwiftUI, you can access device information using the UIDevice and UIScreen classes. By using
UIDevice.current, you can determine the type of device your app is running on, such as iPhone, iPad, TV,
Car, or Mac. This information can be useful in making layout decisions specific to each device.

struct DeviceInformationView: View {

 let device = UIDevice.current.userInterfaceIdiom

 var body: some View {
 VStack {
 switch device {
 case .unspecified:
 Text("unspecified")
 case .phone:
 Text("Running on iPhone")
 case .pad:
 Text("Running on iPad")
 case .tv:
 Text("Running on TV")
 case .carPlay:
 Text("Running on car")
 case .mac:
 Text("Running on mac")
 case .vision:
 Text("Running on Vision")
 @unknown default:
 Text("unknown")
 }
 }
 }
}

Understanding the Available Space

To determine the available space on a device, you can use the UIScreen.main.bounds property.

let screen = UIScreen.main.bounds

However, it is important to note that this property represents the screen size, not the app size. It may not
update correctly when the device is rotated or when supporting landscape or split-screen modes.
Instead, it is recommended to use the GeometryReader view to obtain accurate information about the
available space.

struct ContentView: View {
 var body: some View {
 GeometryReader { geometry in
 Text("GeometryReader: \(geometry.size.width) - \(geometry.size.height)")
 }
 }
}

2 6 7

The GeometryReader view in SwiftUI provides a flexible approach to creating adaptive layouts. By using
this view, you can access the safe area and obtain the updated dimensions of the available space. This
approach is more reliable than relying solely on the UIScreen properties.

Understanding the available space on different devices is crucial for creating adaptive layouts in SwiftUI.
By considering the device sizes, size classes, and using tools like GeometryReader, you can design apps
that adapt seamlessly to various screen sizes and orientations.

10 . 3 I N T E R FA C E S I Z E C L A S S E S

In this lesson, we will explore interface size classes and how they are used in SwiftUI to adapt the layout
based on device types and sizes. Apple defines internal size classes, namely horizontal and vertical size
classes, to determine the layout adaptation. In UIKit, you can access these size classes from the trait
collection. In SwiftUI, you can access them through the environment using the @Environment property
wrapper.

Understanding Size Classes

To access the size classes, use the @Environment property wrapper and specify the desired property:
\.horizontalSizeClass for the horizontal size class and \.verticalSizeClass for the vertical size class. These
properties are enums with two cases: regular and compact. You can check the size classes and perform
different actions based on their values.

struct SizeClassExampleView: View {

 @Environment(\.horizontalSizeClass) var horizontalSizeClass
 @Environment(\.verticalSizeClass) var verticalSizeClass

 var body: some View {
 if verticalSizeClass == .regular {
 Text("iPhone in portrait mode")
 } else {
 Text("iPhone is in landscape mode")
 }
 }
}

For example, in portrait mode on an iPhone, the horizontal size class is compact, while the vertical size
class is regular. When the device is rotated to landscape mode, both size classes become compact. By
checking the vertical size class, you can determine if the device is in landscape mode.

Adapting Layout with Size Classes

You can use size classes to adapt your layout dynamically. For example, you can switch between
different stack layouts based on the size classes. By using the @Environment property wrapper and the
compact size class, you can conditionally display different stack layouts for compact and regular size
classes.

2 6 8

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/10-3-interface-size-classes

Here is a reusable layout component that adaptively chooses the layout container:

struct SizeClassStack<Content: View>: View {

 let content: () -> Content
 @Environment(\.verticalSizeClass) var verticalSizeClass

 init(@ViewBuilder content: @escaping () -> Content) {
 self.content = content
 }

 var body: some View {
 switch verticalSizeClass {
 case .compact:
 HStack(alignment: .center,
 spacing: 10,
 content: content)
 case .regular:
 VStack(alignment: .center,
 spacing: 10,
 content: content)

 case .none:
 EmptyView()
 case .some(_):
 EmptyView()
 }

 }
}

Advanced Example: Navigation Split View

To demonstrate how Apple internally handles adaptive layouts, we will create a navigation split view
example. This example showcases how the layout adapts based on the size classes. By using the
NavigationView or SplitView, we can create a sidebar and detail view layout. The layout automatically
adjusts based on the size classes, providing a consistent user experience across different devices.

struct NavigationSplitViewExample: View {
 let inspirations = NatureInspiration.examples()
 @State private var selectedInspiration: NatureInspiration? = nil

 var body: some View {
 NavigationSplitView {
 List(inspirations,
 selection: $selectedInspiration) { inspiration in
 InspirationRow(inspiration: inspiration)
 .tag(inspiration)
 }
 .navigationTitle("Inspirations")

 } detail: {
 if let selectedInspiration {
 SizeInspirationDetailView(inspiration: selectedInspiration)
 } else {
 ContentUnavailableView("Please select an inspiration",
 systemImage: "photo")
 }
 }
 }

2 6 9

}

fileprivate struct SizeInspirationDetailView: View {

 let inspiration: NatureInspiration

 var body: some View {
 SizeClassStack {
 ImageAspectView(imageName: inspiration.imageName,
 frameAspectRatio: 1.5)

 VStack(alignment: .leading, spacing: 5) {
 Text(inspiration.name)
 .font(.title)
 Text(inspiration.description)
 }
 .padding(12)
 }
 .edgesIgnoringSafeArea([.bottom, .leading])
 }
}

On an iPhone in portrait mode, the vertical size class is regular and the horizontal size class is compact.
Thus the NavigationView collapses into a stack navigation. Whereas on the iPad in landscape mode, the
size classes are regular and the NavigationView uses a split navigation style:

Understanding and utilizing interface size classes in SwiftUI allows you to create adaptive layouts that
seamlessly adjust to different device types and sizes. By leveraging size classes, you can use the same
technic that Apple internally uses for NavigationView/NavigationSplitView and use the same cases. This
helps to have a rough layout adjustment into distinguishable categories. A more fine-tuned adjustment
can be done by e.g. resizing images and using multiline text views.

In the next section, we will explore another powerful feature in iOS 16 called ViewThatFits,” which offers
an alternative approach to size classes.

2 7 0

10 . 4 E N V I R O N M E N T VA L U E S

In SwiftUI, the environment provides valuable information about the state of your app. You’ve already
seen how to access information about size classes, but there’s more to it. You can also retrieve
information about color schemes, fonts, accessibility, and more. This is incredibly useful for creating
adaptive layouts.

In the following example, I’m using the @Environment property wrapper to access the colorScheme
environment property. This property tells us whether the app is currently in light or dark mode. Depending
on the color scheme, we can adjust certain visual elements in our view. For instance, if we’re in light
mode, we might want to add a rounded rectangle border to the Text view. We can achieve this by using
the background modifier and conditionally applying the border based on the color scheme.

struct EnvironmentListView: View {

 @Environment(\.colorScheme) var colorScheme

 var body: some View {
 Text("Hello, World!")
 .padding()
 .background {
 if colorScheme == .light {
 RoundedRectangle(cornerRadius: 5)
 .stroke(Color.cyan, lineWidth: 1.0)
 }
 }
 }
}

By using the environment value, we can dynamically adapt our layout based on the color scheme. This is
just one example of how environment values can be utilized.

Here is a list of other environment properties:

- layoutDirection: Determines the layout direction, such as left-to-right or right-to-left.

- accessibilityEnabled: Indicates whether accessibility features are enabled.

- calendar: Gives access to the current calendar.

- controlSize: Allows you to override the size of control views, like buttons.

- defaultMinimumListHeaderHeight and defaultMinimumListRowHeight: Control the default heights
for list headers and rows.

- dismiss: Used to dismiss a sheet or popover.

- openWindow and dismissWindow: Used to open and dismiss windows.

- openURL: Opens a URL in the default browser or another app.

- undoManager: Provides access to the default undo manager.

2 7 1

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/10-4-environment-values

- managedObjectContext: Gives access to the managed object context in Core Data.

- font: Specifies the default font for views.

- locale: Provides information about the current locale.

- imageScale: Gives information about the scale of images.

- dynamicType: Allows you to adapt to dynamic type sizes.

These environment properties allow you to customize various aspects of your app’s layout and behavior.
By leveraging them, you can create adaptive and dynamic interfaces that respond to changes in the
environment.

10 . 5 E N V I R O N M E N T V S P R E F E R E N C E K E YS

In SwiftUI, understanding how data flows through your app’s view hierarchy is crucial for creating
adaptive and responsive layouts. Two key concepts in this data flow are the environment and preference
keys. Let’s dive into how these work internally.

NavigationView Example

Let's consider the following example with NavigationView:

struct EnvironmentPreferenceExampleView: View {
 var body: some View {
 NavigationView {
 VStack {
 Image(systemName: "globe")
 Text("Hello World")
 }
 .font(.title)
 .navigationTitle("Title")
 }
 }
}

This title is passed using preference keys within a navigation view. You can attach a navigation title
modifier to any child view within the navigation view, and the navigation view will use the innermost title it
finds.

View Hierarchy and Modifiers

In the view hierarchy, view modifiers wrap around their respective views. For instance, a font modifier
wraps around a VStack, and a navigation title modifier wraps around the font, which in turn wraps around
the VStack. This nesting of views is crucial to understand how preference keys travel up the hierarchy.

2 7 2

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/10-5-environment-vs-preferencekeys

Preference Keys

Preference keys travel upwards. When you add a navigation title modifier to a view, it changes a
preference and overrides the navigation title, allowing the navigation view to display it. This upward
movement means you need to attach the navigation title inside the view that requires this property.

Environment Values

On the other hand, environment values propagate downwards. When you attach a font modifier to a
VStack, it internally changes the environment value for font. Instead of the font modifier you can also
write:

VStack {
 Image(systemName: "globe")
 Text("Hello World")
}
.environment(\.font, .title)

The font view modifier is a convenient and easier-to-read way in comparison to using the environment.

Environment vs Preference Keys

In summary, preference keys allow child views to communicate with parent views by passing values up
the view hierarchy. Environment values, conversely, enable parent views to pass down values to their
children. This distinction has significant implications on where you attach modifiers that use either
preference keys or environment values.

2 7 3

Creating Custom Environment Values

You can also define custom environment values. As an example, I will create a custom container that
uses the environment to pass the container title.

To define a custom environment property, you extend the EnvironmentValues struct with a new property.
For instance, if you want to pass a container title, you create a computed property within the extension
and define a default value.

extension EnvironmentValues {

 struct ContainerTitleKey: EnvironmentKey {
 static var defaultValue: String? = nil
 }

 var containerTitle: String? {
 get { self[ContainerTitleKey.self] }
 set { self[ContainerTitleKey.self] = newValue }
 }
}

You need to create a type that conforms to EnvironmentKey and specify a default value. This type is used
as an identifier in the environment dictionary, allowing you to access and set the value.

Once you’ve added your custom environment property, you can use it within your views:

struct EnvironmentContainerView<Content> : View where Content : View {

 @Environment(\.containerTitle) var title

 let content: () -> Content

 init(@ViewBuilder content: @escaping () -> Content) {
 self.content = content
 }

 var body: some View {
 ZStack {
 RoundedRectangle(cornerRadius: 25.0)
 .fill(Color.cyan.gradient)

 VStack(alignment: .leading,
 spacing: 10) {

 if let title {
 Text(title)
 .font(.title)
 .bold()
 }

 content()
 }
 .padding()
 }
 .aspectRatio(1, contentMode: .fit)
 }
}

2 74

You can either set it directly using the environment modifier or create a custom view modifier for a cleaner
syntax:

extension View {
 func containerTitle(_ title: String) -> some View {
 self
 .environment(\.containerTitle, title)
 }
}

The following code example shows how to use the custom container:

VStack {
 EnvironmentContainerView {
 Text("this is inside")
 }
}
.containerTitle("Title")
.padding()

Advanced Use Case: Color Scheme

A practical example of using environment values is handling color schemes. If you have a settings view
where users can switch between light and dark modes, you might encounter a situation where you need
to propagate a value both up and down the view hierarchy.

If you use the environment for colorScheme, only the views inside see the change. But for a settings view,
the changes need to be passed to the whole app:

struct SettingsView: View {

 @State private var selectedColorScheme: ColorScheme = .light

 var body: some View {
 VStack {
 Text("Color Scheme")

 Button(action: {
 selectedColorScheme = .light
 }, label: {
 if colorScheme == .light {
 Image(systemName: "checkmark")
 }
 Text("light")
 })

 Button(action: {
 selectedColorScheme = .dark
 }, label: {
 if colorScheme == .dark {
 Image(systemName: "checkmark")

2 7 5

 }
 Text("dark")
 })

 Button("system") {

 }
 }
 .environment(\.colorScheme, selectedColorScheme)
 }
}

SwiftUI provides a preferredColorScheme modifier that uses preference keys to propagate the
selected color scheme upwards, affecting the entire app. This is a convenient way to handle settings
that should apply globally.

struct SettingsView: View {
 @State private var selectedColorScheme: ColorScheme = .light

 var body: some View {
 VStack {
 …
 }
 .preferredColorScheme(selectedColorScheme)
 }
}

PreferredColorScheme uses reference keys to pass the new value up to the main app. From there SwiftUI
sets the new value for the color scheme in the environment, which will set the new color scheme for the
whole app.

By now, you should have a deeper understanding of how preference keys and environment values work
in SwiftUI. This system allows you to write concise and reusable code, as you only need to set values
once and let them propagate as needed. While property wrappers like @State, @Binding, and view
models are commonly used for data flow, don’t overlook the power of environment values for managing
global settings and styles throughout your app.

10 . 6 DY N A M I C T Y P E S I Z E

In this section, we will explore how to utilize the dynamicTypeSize environment value in SwiftUI to adapt
your layout based on the user’s accessibility settings for text font size.

The sizeCategory property is replacing dynamicTypeSize in iOS 15. dynamicTypeSize is an enum that
reflects the user’s accessibility settings.

To explore the available values in dynamicTypeSize, let’s add a VStack and examine them using a switch
statement. Here’s an example:

2 76

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/10-6-dynamic-type-size

struct DynamicTypeSizeView: View {

 @Environment(\.dynamicTypeSize) var typeSize
 @Environment(\.sizeCategory) var sizeCategory // soft deprecated

 var body: some View {

 switch typeSize {

 case .xSmall:
 Text("xSmall Type Size")
 case .small:
 Text("small Type Size")
 case .medium:
 Text("medium Type Size")
 case .large:
 Text("Large Type Size")
 case .xLarge:
 Text("xLarge Type Size")
 case .xxLarge:
 Text("xxLarge Type Size")
 case .xxxLarge:
 Text("xxxLarge Type Size")

 case .accessibility1:
 Text("accessibility1 Type Size")
 case .accessibility2:
 Text("accessibility2 Type Size")
 case .accessibility3:
 Text("accessibility3 Type Size")
 case .accessibility4:
 Text("accessibility4 Type Size")
 case .accessibility5:
 Text("accessibility5 Type Size")
 @unknown default:
 Text("unknown Type Size")
 }

 }
}

There are five accessibility settings and seven regular sizes, ranging from extra small to medium, large,
and extra extra large (XXL).

Handling Accessibility Sizes

Dynamic type sizes can be categorized into regular and accessibility sizes. Accessibility sizes are
associated with specific accessibility settings. dynamicTypeSize has a boolean property that tells you if
accessibility is enabled:

typeSize.isAccessibilitySize

You could use this information to hide or show certain text elements based on accessibility settings.

2 7 7

Adapting Fonts with Dynamic Type Size

When using the dynamicTypeSize environment property, the font is automatically adjusted as long as you
use one of the system fonts, such as the title font. However, if you want to specify a fixed size, it will
prevent dynamic type adaptation:

Text("Hello, World!")
 .font(.system(size: 14))

To allow scaling with dynamic type, use one of the system fonts like headline.

Text("Hello, World!")
 .font(.headline)

Limiting Dynamic Type Sizes

To limit the scaling of text sizes, SwiftUI provides the limitedDynamicTypeSize modifier. This modifier
takes a range of dynamic type sizes, allowing you to set minimum and maximum limits. By specifying a
range, you can ensure that the text size stays within a certain range, even when accessibility settings
change.

Text("this is using a fixed size")
 .dynamicTypeSize(.xLarge)

Text("Limited dynamic range")
 //.dynamicTypeSize(…DynamicTypeSize.accessibility1) // set a maximum value
 // .dynamicTypeSize(DynamicTypeSize.medium…) // set a minimum value
 .dynamicTypeSize(DynamicTypeSize.medium…DynamicTypeSize.accessibility1)

It’s worth mentioning that you should use these limitations judiciously. Apple intended for dynamic type
size to adapt to the user’s accessibility settings, so it’s not recommended to fix your layouts by always
neglecting higher accessibility settings.

You can limit larger elements like titles and sub-headlines because they are already large enough.
However, smaller elements with e.g. caption font should scale according to accessibility settings.

2 7 8

Practical Example: SuperHeroDetailView

The superhero view from section 5 Sizing views has a complex layout, where I use an alternating
alignment for the quotes list. If you check this layout for different dynamic font settings, you can see that
for the accessibility settings, the layout does not look good. The text is so large that it stretches over
many lines.

2 7 9

For the accessibility settings, I would prefer to not use the alternating alignment and remove some of the
padding:

I want to adjust the layout based on dynamic type sizes. By conditionally applying view modifiers, we can
remove unnecessary padding and alignment adjustments for larger text sizes, improving the overall
layout.

struct MarvelView: View {
 let superHero: SuperHero
 @Environment(\.dynamicTypeSize) var dynamicTypeSize
 var body: some View {
 ZStack(alignment: .bottom) {
 // Image

 ScrollView {
 VStack(alignment: .leading, spacing: 10) {
 // Texts

 VStack(alignment: .leading) {
 ForEach(Array(superHero.quotes.enumerated()), id: \.offset) {
 (index, quote) in
 Text(quote)
 .applyIf(!dynamicTypeSize.isAccessibilitySize) {
 $0.padding(index.isOdd ? .leading : .trailing,
 50)
 .frame(maxWidth: .infinity,
 alignment:
 index.isOdd ? .trailing : .leading)
 }
 }
 }
 .applyIf(!dynamicTypeSize.isAccessibilitySize) {
 $0.padding(.leading)
 }
 }
 }
 }

2 8 0

10 . 7 S C A L E D M E T R I C

When designing layouts that accommodate various font sizes, especially when supporting Dynamic Type,
it’s crucial to ensure that elements within your UI scale appropriately. You might have encountered
situations where increasing the font size leads to a cramped interface because the padding and spacing
remain constant. To address this, SwiftUI provides a powerful tool called ScaledMetric.

ScaledMetric is a property wrapper that automatically adjusts sizes based on the user’s Dynamic Type
settings. This means that as the text size changes, so can the other dimensions in your layout, such as
padding, spacing, and even custom shapes.

Imagine you have a simple “Hello World” text view, and you want to add padding and a border with
rounded corners. Here’s how you might start:

Text("Hello World")
 .padding(10)
 .background(
 RoundedRectangle(cornerRadius: 5)
 .stroke(Color.blue, lineWidth: 4)
)

When you test this with different font sizes, you’ll notice that the padding and border don’t scale with the
text. The padding remains at a fixed size, which can make the text look too close to the border at larger
sizes.

Using ScaledMetric

To ensure that the padding scales with the font size, you can use ScaledMetric which is a property
wrapper:

2 81

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/10-7-scaled-metic

struct ScaledMetricExampleView: View {
 @ScaledMetric var padding: CGFloat = 10
 @ScaledMetric var cornerRadius: CGFloat = 5
 @ScaledMetric var lineWidth: CGFloat = 4

 var body: some View {
 Text("Hello, World!")
 .padding(padding)
 .background {
 RoundedRectangle(cornerRadius: cornerRadius)
 .stroke(Color.blue, lineWidth: lineWidth)
 }
 }
}

Now, when you change the font size, the padding adjusts accordingly, maintaining a balanced look. You
can apply ScaledMetric to other properties as well, such as the corner radius and line width of your
border.

ScaledMetric is an incredibly convenient tool for creating adaptive layouts in SwiftUI. It simplifies the
process of ensuring that your UI elements scale correctly with text size, which is essential for
accessibility. By extracting sizes into separate properties and making them @ScaledMetric, you can
make your layout look good across all accessibility sizes with minimal effort

Custom Scaling with Dynamic Type Size

If you need more control over the scaling, you can use the DynamicTypeSize enumeration to manually
adjust sizes. This approach allows you to fine-tune the scaling behavior for different Dynamic Type
categories.

struct ScaledMetricExampleView: View {
 @Environment(\.dynamicTypeSize) var typeSize

 var customSize: CGFloat {
 switch typeSize {
 case .xSmall: return 3
 case .small: return 4
 case .medium: return 5
 case .large: return 6
 case .xLarge, .xxLarge, .xxxLarge: return 7
 case .accessibility1: return 8
 case .accessibility2: return 9
 case .accessibility3: return 10
 case .accessibility4: return 11
 case .accessibility5: return 12
 @unknown default:
 return 7
 }
 }

 var body: some View {
 Text("Hello, World!")
 .padding(customSize)
 }
}

2 8 2

10 . 8 C O N D I T I O N A L V I E W M O D I F I E R S

Now that you have all the necessary information, such as color scheme and size categories, you can
apply different layouts and styles based on these conditions. One approach to achieve this is by using
conditional view modifiers. However, it’s not as straightforward as using an if statement.

In this section, I’ll show you how to conditionally apply changes using a practical example. Let’s start by
creating a boolean state variable called hasBorder and initializing it to true. We’ll use this property to add
a border to our HelloWorldText view. To toggle the border on and off, we’ll add a toggle switch that binds
to the hasBorder property.

struct ConditionalViewModifierExampleView: View {
 @State private var hasBorder: Bool = true

 var body: some View {
 VStack(spacing: 20) {
 Text("Hello, World!")
 .padding()
 .border(hasBorder ? Color.indigo : Color.clear)

 Toggle(hasBorder ? "show border" : "no border",
 isOn: $hasBorder.animation(.easeInOut(duration: 2)))
 .fixedSize()
 }
 }
}

By using a ternary operator, we can conditionally set the border color to indigo when hasBorder is true,
and to clear when it’s false. Toggling the switch will make the border appear and disappear accordingly.

Now, let’s apply the same conditional logic to the padding modifier. Currently, we haven’t specified any
value for padding, so it uses the system default padding that scales nicely with the type sizes. However, if
we want to toggle the padding, we need to specify a value, such as 0.

.padding(hasBorder ? 10 : 0)

In this case, since we want to preserve the system padding when hasBorder is false, it would be better to
hide and show the entire padding modifier. To achieve this, we can define a custom view modifier that
takes a condition and applies the modifiers accordingly.

extension View {
 @ViewBuilder
 func applyIf<M: View>(_ condition: Bool, transform: (Self) -> M) -> some View {
 if condition {
 transform(self)
 } else {
 self
 }
 }
}

2 8 3

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/10-8-conditional-view-modifiers

Now, instead of using the ternary operators, we can use the applyIf modifier to conditionally apply the
border and padding modifiers.

Text("Hello, World!")
 .applyIf(hasBorder, transform: { view in
 view
 .padding()
 .border(Color.indigo)
 })

This approach allows us to handle the condition within the view modifier itself, making the code more
readable and maintainable.

Problems with Conditional View Modifiers

However, it’s important to note that conditional view modifiers have some limitations. For example, when
it comes to animations, SwiftUI doesn’t know how to animate between two different views. It defaults to a
fade-in and fade-out animation. If you need to animate the changes, it’s better to use ternary operators
instead.

Additionally, if the views involved have their own states, such as @State or @StateObject properties,
using conditional view modifiers may lead to the loss of state. Therefore, it’s crucial to be cautious when
using if statements and consider the impact on user data.

For example, using this subview that has a state property:

struct StateExampleView: View {
 @State private var text: String = ""
 var body: some View {
 TextField("Type something", text: $text)
 }
}

together with a conditional view modifier:

2 8 4

StateExampleView()
 .applyIf(hasBorder, transform: { view in
 view
 .padding()
 .border(Color.indigo)
 })

In the following screenshots, you see the initial empty TextField. Then I entered a test text. Last I toggled
the hasBorder property. SwiftUI destroys the old view that holds the state with the text. It replaces the
older view with a new view that has an empty state string.

This can lead to unexpected behavior, such as losing user input. While conditional view modifiers can be
useful in certain cases, they should not be the default strategy. It’s important to carefully consider where
and when to use them. In many situations, using ternary operators provides a simpler and more reliable
solution.

10 . 9 A N Y L AYO U T - S W I T C H I N G B E T W E E N L AYO U T
C O N TA I N E R S

In this section, we will delve into the details of switching between different layout containers in SwiftUI.
Let’s start with a basic example where we have a state property called isHorizontal that we connect to a
toggle. We can use this state to determine which layout container to display. If isHorizontal is true, we
show an HStack; otherwise, we use a VStack.

structExampleView: View {
 @State private var isHorizontal: Bool = true

 var body: some View {
 VStack {
 if isHorizontal {
 HStack {
 texts
 }
 } else {
 VStack {
 texts
 }
 }

 Toggle(horizontal ? "horizontal" : "vertical",

2 8 5

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/10-9-anylayout
https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/10-9-anylayout

 isOn: $isHorizontal.animation(.easeInOut(duration: 2)))
 }
 }

 @ViewBuilder
 var texts: some View {
 Text("First Text")
 .padding()
 .background(Color.yellow)
 Text("Second Text")
 .padding()
 .background(Color.cyan)
 }
}

This approach seems fine at first glance, but there are a few problems with it. One issue is related to
animations. If we add an animation to the state property, the default behavior is to fade out the old layout
and fade in the new one. SwiftUI doesn’t recognize that the texts in the HStack and VStack are the same
views, so it doesn’t know how to animate the transition smoothly. It uses the default animation behavior
with is fade in/out:

Another problem arises when we have views within the layout containers that rely on state. If we switch
between the layouts, we lose the state of those views. For example, if we have a text field within the
layout, any input entered will be lost when switching between layouts. This is the same problem that we
had in the conditional view modifier section.

To address these issues, SwiftUI introduced a new view called AnyLayout in iOS 16. This view allows us
to conditionally create a container based on the current state. By using AnyLayout, we can preserve
the identity of the views and maintain their state during layout transitions.

If I use AnyLayout for the example from above:

struct AnyLayoutExampleView: View {
 @State private var isHorizontal: Bool = true

 var layout: AnyLayout {
 isHorizontal ? AnyLayout(HStackLayout()) : AnyLayout(VStackLayout())
 }

 var body: some View {
 VStack {
 layout {
 Text("First Text")
 .padding()
 .background(Color.yellow)
 Text("Second Text")
 .padding()

2 8 6

 .background(Color.cyan)
 }

 Toggle(isHorizontal ? "horizontal" : "vertical",
 isOn: $isHorizontal.animation(.easeInOut(duration: 2)))
 .padding()
 }
 }
}

Now, when we switch between layouts, the views maintain their identity, allowing for smooth animations
and preserving any state associated with them.

AnyLayout is a powerful tool that you should consider using whenever you need to switch between
different layout containers without losing state. It was introduced in iOS 16 and can greatly improve the
user experience of your app.

10 .10 V I E W T H AT F I T S

In previous sections, we explored various properties like dynamic types and size classes to conditionally
determine the layout. However, there are cases where we simply want to ensure that our content fits
within the available space without worrying about different situations. That’s where the new container,
ViewThatFits introduced with iOs 16, comes into play.

The ViewThatFits container allows us to provide multiple variations of your layout. It automatically selects
the variation that fits best within the available space, eliminating the need to consider all the different
possibilities.

Let’s consider an example. Imagine we have three texts: a longer text, a medium text, and a smaller text.
Normally, when the accessibility settings are set to a larger size, the longer text may not fit on a single line
and wrap to multiple lines. However, we want to ensure that the text always remains on a single line. If it
doesn’t fit, we want to switch to a smaller version. This is where View That Fits comes in handy:

ViewThatFits {
 Text("This is a long text with more information")
 .foregroundStyle(.green)
 Text("This is a short text.")
 .foregroundStyle(.red)
 Text("Very short text")
 .foregroundStyle(.indigo)
}

2 8 7

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/10-10-viewthatfits

However, using View That Fits can become more complicated when dealing with advanced examples. To
understand its behavior better, let’s dive into how it calculates the size.

According to the documentation, ViewThatFits selects the first child whose ideal size on the
constrained axis fits within the proposed size. This may sound a bit complex, but it’s essentially
asking the child view its ideal size. If the size of the child view is smaller than the available size, the child
view fits and is placed. If not ViewThatFits goes to the next child view and tests if it fits.

You can see the ideal size of a view by using the fixed size modifier. By applying the Fixed Size modifier,
we can see the intrinsic size of the view, which is the size it prefers when given both vertical and
horizontal directions unlimited space:

Text("This is a long text with more information")
 .fixedSize()

In the following image, you can see that the text view will always use its ideal size. For the larger
accessibility setting the text does not fit on the screen:

ViewThatFits would compare the size of the child view to the available space. It would determine that for
the accessibility settings the chid does not fit and try the next child in the list.

Per default ViewThatFits will use the ideal size in both vertical and horizontal direction:

ViewThatFits(in: [.horizontal, .vertical]) {
 …
}

2 8 8

You can restrict the child views to fit only in the vertical direction, the view will use its ideal size in the
vertical dimension while still considering the proposed size in the horizontal dimension.

ViewThatFits(in: .vertical)

For example, the container would ask the child view “How do you fit if I give you unlimited space in the
vertical direction and e.g. 300 points (the available space) in the horizontal direction. This is equivalent to
using:

Text("This is a long text with more information")
 .fixedSize(horizontal: false, vertical: true)

Similarly, if we restrict the view to fit only in the horizontal direction, it will use its ideal size in the
horizontal dimension while considering the proposed size in the vertical dimension.

ViewThatFits(in: .horizontal) {
 …
}

This is equivalent to using:

Text("This is a long text with more information")
 .fixedSize(horizontal: true, vertical: false)

To test and visualize these scenarios, we can use the Fixed Size modifier with different restrictions. This
allows us to see what size the layout actually considers and helps us understand the behavior of
ViewThatFits. By using the Fixed Size modifier, you can gain better insights into how the view sizes itself
and make informed decisions about our layout.

In the upcoming examples, we’ll explore different use cases where the behavior of ViewThatFits becomes
clearer.

10.11 ViewThatFits Example 1

In this section, I’m going to show you an example of ViewThatFits where we display three buttons.
Usually, buttons have a label, which consists of an icon and text. However, there may be cases where we
want to show variations of the label based on the available space. For instance, if there is ample space,
we can display both the icon and a larger text text. If the space is smaller, we can show the icon and a
shorter text. And if space is very limited, we can simply show only the icon.

2 8 9

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/10-10-viewthatfits/topics/10-11-viewthatfits-example-1

In the following screenshots, I tested this to adapt for different screen sizes and accessibility settings:

To achieve different variations of this button, we’ll create a subview called AdjustableButton, which is a
view. This subview will have an action closure that doesn’t take any arguments or return any value (void).
We’ll also include a long title string, a short title string, and an icon name, all of which are of type string.

To switch between the different variations, we’ll use the ViewThatFits. The largest variation will use the
icon and large title property. Next, we’ll have a smaller version with a short title, and finally, the shortest
version will only display the system icon using an Image view with the system name.

struct AdjustableButton: View {

 let longTitle: String
 let shortTitle: String
 let iconName: String
 let action: () -> Void

 init(longTitle: String,
 shortTitle: String,
 iconName: String,
 action: @escaping () -> Void) {
 self.longTitle = longTitle
 self.shortTitle = shortTitle
 self.iconName = iconName
 self.action = action
 }

 var body: some View {
 ViewThatFits {
 Button(action: action) {
 Label(longTitle, systemImage: iconName)
 }

 Button(action: action) {
 Label(shortTitle, systemImage: iconName)
 }

 Button(action: action) {
 Image(systemName: iconName)
 }
 }
 .buttonStyle(.borderedProminent)
 }
}

2 9 0

You can then use this reusable component to create an HSTack with 3 buttons like:

HStack {
 AdjustableButton(longTitle: "Delete Document",
 shortTitle: "Delete",
 iconName: "trash.fill") { }
 AdjustableButton(longTitle: "Duplicate Document",
 shortTitle: "Duplicate",
 iconName: "doc.on.doc") { }
 AdjustableButton(longTitle: "Export Document",
 shortTitle: "Export",
 iconName: "square.and.arrow.up") { }
}

This adaptive layout works well for different screen sizes as well. As a developer, you can start designing
on the smallest screen, like the iPhone 8, and then test it on larger screens to ensure it looks good across
devices.

In this example, we adjusted each button individually, but you can also have a variation where all three
buttons are displayed as icons only or with both icons and text. In that case, the ViewThatFits modifier
would be applied at a higher level.

10.12 ViewThatFits Example 2

Let’s consider a scenario where you have a list of notes, each with different information such as a title
and a timestamp indicating the creation date. Since the title length can vary due to user input, we need to
be able to adjust the layout accordingly.

To tackle this challenge, we can utilize the ViewThatFits approach. It allows us to determine whether to
display the title and timestamp on the same line or separate lines based on the available space. Even if
we increase the text size, the layout scales gracefully, making efficient use of the available space.

To implement this adaptive layout, we’ll create a NoteListView where we’ll define a constant array of
example notes. Each note will have properties like title, favorite status, creation date, color tag, and
content.

2 91

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/10-10-viewthatfits/topics/10-12-viewthatfits-example-2

struct SizeThatFitsListView: View {

 let notes = Note.examples()

 var body: some View {
 NavigationStack {
 List {
 ForEach(notes) { note in
 NoteRow(note: note)
 }
 }
 .navigationTitle("Notes")
 }
 }
}

Next, I define a NoteRow which is used in the NoteListView. I am using the title, isFavorite, and
creationDate properties of each note. To avoid code duplication, I extract the individual elements as
computed properties:

struct NoteRow: View {

 note: Note

 var body: some View {
 ViewThatFits {
 HStack {
 favIcon
 titleView
 Spacer()
 dateView
 }

 HStack(alignment: .firstTextBaseline) {
 favIcon
 VStack(alignment: .leading) {
 titleView
 .lineLimit(2)
 dateView
 }
 }
 }
 }

 var dateView: some View {
 Text(note.creationDate.formatted(date: .abbreviated,
 time: .shortened))
 .font(.caption)
 .foregroundStyle(.gray)
 }

 var favIcon: some View {
 Image(systemName: "heart.fill")
 .foregroundStyle(note.isFavorite ? .accent : .clear)
 }

 var titleView: some View {
 Text(note.title)
 }
}

2 9 2

For the body of the NoteRow I use ViewThatFits with 2 different versions. I use an HStack first which is
shown e.g. for smaller content and a VStack for larger content.

Additionally, you can also use the dynamic type size to adjust the date formatting for accessibility
settings. In the following, I am showing a shorter date if accessibility settings are turned on:

struct NoteRow: View {

 note: Note
 @Environment(\.dynamicTypeSize) var typeSize

 var body: some View {
 ViewThatFits {
 …
 }
 }

 var dateView: some View {
 Text(note.creationDate.formatted(date: .abbreviated,
 time:
 typeSize.isAccessibilitySize ? .omitted : .shortened))
 .font(.caption)
 .foregroundStyle(.gray)
 }

 …
}

10.13 ViewThatFits Example 3

In this section, we will focus on an example of an inspiration detail view that consists of an image, title,
and text. Our goal is to create a layout that adapts to different orientations, screen sizes, and dynamic
type variations. I already implemented a similar version of InspirationDetailView with GeometryReader
and InterfaceSizeClasses. Let's see how to use ViewThatFits for this use case.

2 9 3

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/10-10-viewthatfits/topics/10-13-viewthatfits-example-3

To begin, let’s create a separate view of the InspirationDetailView using the ViewThatFits container. We’ll
have one version with a Portrait layout and another with a Landscape layout. This will allow us to test and
preview each version independently.

struct ViewThatFitsInspirationDetailView: View {
 let inspiration = NatureInspiration.example1()

 var body: some View {
 ViewThatFits(in: .horizontal) {
 LandscapeInspirationDetailView(inspiration: inspiration)
 PortraitInspirationDetailView(inspiration: inspiration)
 }
 }
}

To avoid code repetition, I am creating additional subviews for the image and text views:

struct TextsInspirationDetailView: View {
 let inspiration: NatureInspiration
 var body: some View {
 VStack(alignment: .leading, spacing: 5) {
 Text(inspiration.name)
 .font(.title)
 Text(inspiration.description)
 }
 .padding(12)
 }
}

struct ImageInspirationDetailView: View {
 let inspiration: NatureInspiration
 var body: some View {
 ImageAspectView(imageName: inspiration.imageName,
 frameAspectRatio: 1)
 }
}

For the landscape version, I am using a VStack. However, we encounter a problem when using larger
dynamic type sizes. The text becomes too big to fit within the screen, causing overflow. To address this,
we can embed the VStack in a ScrollView to allow scrolling when necessary.

struct PortraitInspirationDetailView: View {
 let inspiration: NatureInspiration
 var body: some View {
 ScrollView {
 VStack {
 ImageInspirationDetailView(inspiration: inspiration)
 TextsInspirationDetailView(inspiration: inspiration)
 }
 }
 }
}

2 9 4

For the landscape version, I am using an HStack:

struct LandscapeInspirationDetailView: View {
 let inspiration: NatureInspiration
 var body: some View {
 GeometryReader(content: { geometry in
 ScrollView {
 HStack {
 ImageInspirationDetailView(inspiration: inspiration)
 .frame(minHeight: geometry.size.height)

 TextsInspirationDetailView(inspiration: inspiration)
 }
 }
 })
 .frame(minWidth: 431)
 }
}

To see what layout ViewThatFits considers, I am adding previews for both the landscape and portrait
version. I am adding the fixedSize modifier, which will apply the same sizing behavior as ViewThatFits(in:
.horizontal):

#Preview("Portrait", traits: .portrait, body: {
 PortraitInspirationDetailView(inspiration: NatureInspiration.example1())

})

#Preview("Landscape", traits: .landscapeLeft, body: {
 LandscapeInspirationDetailView(inspiration: NatureInspiration.example1())
 .fixedSize(horizontal: true, vertical: false)
})

By testing and previewing each version separately, we can gain a better understanding of how the layout
behaves. We can use the fixedSize modifier with different variations to see how the views resize and fit
within the available space. This allows us to fine-tune the layout and ensure it meets our requirements.

10 .14 K E Y B O A R D L AYO U T A DJ U S T M E N T S

When you’re working with SwiftUI, it’s important to consider how the on-screen keyboard affects your
layout. The following example includes a text, image, text field, and a save button:

struct EditCatView: View {
 @State private var text = ""

 var body: some View {
 VStack {
 Text("What is your cats name?")
 .font(.title)
 Image(.cat2)
 .resizable()
 .scaledToFit()

2 9 5

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/10-14-keyboard-layout-adjustments

 TextField("Name", text: $text)
 .textFieldStyle(.roundedBorder)

 Button {
 } label: {
 Text("Save")
 }
 .buttonStyle(.borderedProminent)
 }
 .padding()
 }
}

When you tap on a text field in your app, the keyboard slides in. If it doesn’t appear in your simulator, it
might be because you’ve disabled it. You can toggle the keyboard visibility with Command + K.

By default, SwiftUI tries to adapt to the presence of the keyboard. However, not all views are equally
flexible. For instance, a text field or a button typically wants to maintain a height that fits one line of text.
The title is usually designed to fit on a single line as well. The most adaptable element in our example is
the image, which is why it scales down when the keyboard appears.

Handling Fixed Heights

Let’s consider what happens if you set a fixed height on the image:

Image(.cat2)
 .resizable()
 .scaledToFit()
 .frame(height: 500)

2 9 6

With a fixed height of 500 points, the image no longer resizes when the keyboard appears. This can
cause layout issues, as the image may take up more space than is available, obscuring the text field and
preventing you from seeing what you’re typing. This is not the behavior you want.

Flexible Frames to the Rescue

To avoid such issues, using a flexible frame for the image is a good solution. It allows the image to adapt
to the available space when the keyboard is displayed.

Image(.cat2)
 .resizable()
 .scaledToFit()

By making the image resizable and setting its aspect ratio to .fit, you ensure that it scales down
appropriately when the keyboard is active, maintaining the integrity of your layout.

Remember, when designing your layouts, always consider how the keyboard will impact the user
experience. By making your views flexible and responsive, you can create a seamless experience even
when the keyboard is on screen.

2 9 7

10.15 Keyboard & Background Image

In the following example, I have a gradient background. When the keyboard is shown, the whole layout
adjusts including the gradient.

struct BackgroundGradientEditView: View {
 @State private var text = ""

 var body: some View {
 VStack(alignment: .leading) {
 Text("What Do You Say?")
 .font(.title)
 .bold()
 .foregroundStyle(.white)
 HStack {
 TextField("Answer", text: $text)
 .textFieldStyle(.roundedBorder)

 Button("Save") { }
 .buttonStyle(.borderedProminent)
 }
 }
 .padding()
 .padding(.bottom, 50)
 .frame(maxWidth: .infinity, maxHeight: .infinity)
 .background(
 LinearGradient(colors: [Color.red, Color.green, Color.blue],
 startPoint: .topLeading,
 endPoint: .bottomTrailing)
)
 }
}

2 9 8

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/10-14-keyboard-layout-adjustments/topics/10-15-keyboard-background-image

To prevent the layout adjustments, I can add an ignoreSafeArea modifier for keyboard. Attaching this to
the gradient will leave the gradient unchanged when the keyboard appears. Additionally, I also ignore the
container safe area insets, so that the gradient fills out the whole screen.

 .background(
 LinearGradient(…)
 .ignoresSafeArea([.keyboard, .container])
)

A similar example uses an image in the background. I am again using the ignoreSafeArea modifier to
keep the image in the background unchanged:

struct BackgroundEditCatView: View {
 @State private var text = ""
 var body: some View {
 VStack(alignment: .leading) {
 …
 TextField("Name", text: $text)
 }
 .padding()
 .padding(.bottom, 50)
 .frame(maxWidth: .infinity, maxHeight: .infinity,
 alignment: .bottom)
 .background (
 Color.gray.overlay {
 Image(.cat2)
 .resizable()
 .scaledToFill()
 }
 .ignoresSafeArea(.all))
 }
}

2 9 9

Using the ignoresSafeArea modifier is crucial in scenarios like this. However, it’s important to understand
where to apply it to achieve the desired results. If you attach it after the background view, all the views
within that hierarchy will ignore the safe area and the keyboard. This can lead to situations where the
keyboard overlaps with important elements, such as text fields, making it difficult for users to see what
they’re typing.

struct BackgroundEditCatView: View {
 @State private var text = ""
 var body: some View {
 VStack(alignment: .leading) {
 …
 TextField("Name", text: $text)
 }
 …
 .background(…)
 .ignoresSafeArea(.all)
 }
 }

3 0 0

10.16 Keyboard & Forms

Let’s dive into an example where we create a user profile view with several text fields for the name, family
name, nickname, interests, and a few other random ones. Additionally, we’ll include a multiline text editor.

struct CreateProfileView: View {
 @State var name: String = ""
 @State var familyName: String = ""
 @State var nickname: String = ""
 @State var interests: String = ""
 @State var profileDescription: String = ""
 @State var textfieldText: String = ""
 var body: some View {
 NavigationStack {
 List {
 TextField("Name", text: $name)
 TextField("Family Name", text: $familyName)
 TextField("Nickname", text: $nickname)
 TextField("Interests", text: $interests)
 Section {
 TextField("Textfield1", text: $textfieldText)
 TextField("Textfield2", text: $textfieldText)
 TextField("Textfield3", text: $textfieldText)
 TextField("Textfield4", text: $textfieldText)
 TextField("Textfield5", text: $textfieldText)
 }
 Section("Describe Yourself") {
 TextEditor(text: $profileDescription)
 }
 }
 .navigationTitle("Create A User Profile")
 }
 }
}

3 01

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/10-14-keyboard-layout-adjustments/topics/10-16-keyboard-forms

The key to handling the keyboard effectively is to use a Form. A Form in SwiftUI is similar to a List and
comes with a styled scroll view, making it inherently scrollable. This is particularly useful when you have
text fields within a scroll view because the view automatically adjusts to ensure the active text field is
visible when the keyboard appears.

Here’s what happens: when you tap on a text field, the form’s scroll view moves so that the text field is
not obscured by the keyboard. You can see the text field clearly, which enhances the user experience.

VStack vs. Form/List/ScrollView

To illustrate the difference, let’s compare this to a layout that uses a VStack instead of a Form. If you
place the same text fields and text editor within a VStack, you’ll notice that when you tap on the multiline
text editor at the bottom, it gets hidden behind the keyboard. This is not ideal because the user can’t see
what they’re typing.

In contrast, using a Form, List or ScrollView ensures that when you tap into any text field, the list or scroll
view moves the text field into view above the keyboard. This automatic adjustment has been a feature
since iOS 14, and it’s a significant improvement over iOS 13, where such adaptability was not provided
by default.

Automatic Adjustments and Potential Hiccups

Be aware that there might be occasional delays or hiccups when the keyboard is showing, but generally,
these adaptations work well.

In the example of our user profile form, you don’t need to change anything as long as you use a List or
ScrollView. Your users can enter information into the text fields, see what they’re typing, and the
keyboard is managed automatically.

10.17 Keyboard toolbar

There are times when you may want to add additional elements that stick to the edge of the keyboard
and only appear when the keyboard is shown. To achieve this, you can use the toolbar and add a toolbar
item with the placement of the keyboard.

Let’s say you have a text field and you want to add some buttons similar to the suggestion text. You can
simply add a toolbar item with a button inside. For example, you can add a button that says “Click me”
and see where it appears.

struct KeyboardToolbarExampleView: View {
 @State private var name = "Taylor"
 var body: some View {
 TextField("Enter your name", text: $name)
 .textFieldStyle(.roundedBorder)
 .padding()
 .toolbar(content: {
 ToolbarItem(placement: .keyboard) {
 Button("Click me") { }
 }
 })

3 0 2

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/10-14-keyboard-layout-adjustments/topics/10-17-keyboard-toolbar

 }
}

When you open the keyboard, you’ll notice an extra button appearing at the top. You can also add
multiple elements like this. These buttons act as quick actions and will disappear when you remove the
keyboard or press the return key.

Now, if you want to have something that sticks to the bottom edge instead of only showing when the
keyboard is visible, you can use the safe area insets. In this case, you can use the safe area insets for
the bottom and add a button there with some styling, such as padding and a background color.

struct SafeAreaInsetExampleView: View {
 @State private var name = "Taylor"

 var body: some View {
 TextField("Enter your name", text: $name)
 .textFieldStyle(.roundedBorder)
 .padding()
 .frame(maxWidth: .infinity, maxHeight: .infinity)
 .background(
 LinearGradient(colors: [Color.red, Color.green, Color.blue],
 startPoint: .topLeading,
 endPoint: .bottomTrailing)
 .ignoresSafeArea([.keyboard, .container])
)
 .safeAreaInset(edge: .bottom, content: {
 Button("Click me") { }
 .padding()
 .frame(maxWidth: .infinity)
 .background(.thinMaterial)
 })
 }
}

3 0 3

To ensure the button appears above the background, you can attach it to the text field and add a
background with a flexible frame. You can also make the background transparent or use materials like
thin material, padding, and a frame to stretch it horizontally with a maximum width of infinity.

By doing this, the button will stick to the bottom edge and move up when the keyboard appears.
However, it will always remain visible, unlike when using the toolbar placement for the keyboard, where it
only shows when the toolbar is visible.

These are minor adjustments you can make when you want to place something close to the keyboard
that adapts differently than your main content.

3 0 4

10 .18 S U M M A RY R E S P O N S I V E D E S I G N

I already covered a lot of topics that are relevant to responsive design in the previous sections. Therefore
I am not going to repeat it here. Instead, I will list the following main key takeaways:

- Use dividers and spacers which are flexible views

- Use flexible frames instead of fixed frames because they adapt automatically to the available space

- Know how to use alignment guides to position views

- Have a good understanding of how views like images and text are sized in SwiftUI

- Use layout priority to truncate text view behavior

- Make images resizable and respect the natural image aspect ratio

- embed your content in a ScrollView which will also hold potential larger content e.g. accessibly settings
or smaller screen sizes

10 .19 S U M M A RY A DA P T I V E D E S I G N

You can achieve more fine-tuned sizing with:

- Container relative frame which is especially useful for sizing content inside ScrollViews

- GeometryReader gives you full flexibility

- Write your own custom Layout container with the Layout Protocol

- ViewThatFits to give multiple view layout versions. This also works with custom layout containers

- LazyVGrid and LazyHGrid with adaptive Grid items have a lot of potential for adaptively adjusting
layouts for e.g. device orientations

3 0 5

11 . S P E C I A L S YS T E M C O N TA I N E R S

11 .1 OV E R V I E W O F S YS T E M C O N TA I N E R S

In this section, I want to talk about system containers. They offer some advantages that can be quite
beneficial for your app development. For instance, they come with specific styling that adapts well across
platforms, providing a consistent look whether your app is on macOS or iOS. System containers include
List, Form, and Table.

System containers in SwiftUI offer a range of benefits for your app development:

• Native Styling and Behavior: These components look like native Apple components e.g. Table has
the same table-like layout as in the Finder app.

• Adaptive Styling: They come with specific styling that adapts seamlessly across platforms, such as
macOS and iOS.

• Built-in Interactions: Containers like Table have features like tap-to-sort headers, and Lists offer
swipe-to-delete actions.

When to Use System Containers

• List vs. ScrollView: If you’re looking for predefined styling and behavior, a system container like List is
a great choice. For more customization, consider using a ScrollView with a LazyVStack.

• Lazy Loading: Both Lists and Scroll Views with LazyVStacks load content lazily, which is efficient for
performance.

Sample Project: Notes App

During this section, we’ll work on a sample project—a little notes app. On the left side, there’s a system
List where you can select different categories like All Notes, Favorites, or Folders. I’ll show you how to
handle selections within a Navigation Split View, and we’ll delve into the main area where a Table View
allows for further interactions like sorting and filtering.

3 0 6

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/11-1-overview-of-system-containers

The same note-taking app on iOS shows the list in different styles. The first screen on the left uses the
sidebar style, whereas the middle screen shows the list of notes in the inset list style.

11 . 2 A D D I N G M A C O S TA R G E T

Before I dive into the details of system containers, I want to ensure that we can explore these views on
macOS as well as iOS. Currently, my project is set up with a target for iOS, but I want to create a native
macOS app. Let me walk you through the process of adding a macOS target to your existing SwiftUI
project.

Step 1: Adjusting Project Settings

First, open your project settings and navigate to the target’s general settings. You might notice that
there’s an option for “Mac” that’s designed for iPad apps. This isn’t what we’re looking for; we want a
native macOS app.

Step 2: Enabling macOS Support

To add macOS support, click on the plus button and select the option to enable it.

3 0 7

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/11-2-adding-macos-target

If you see two macOS targets, one being the “Designed for iPad” version, select it and press delete. We
don’t need that one.

Step 3: Updating Deployment Info

I recommend setting the deployment target to macOS 14 and iOS 17. This allows us to use the latest
features without worrying about availability checks.

3 0 8

Step 4: Resolving Compatibility Issues

After building for macOS, you might encounter some issues. For instance, UIDevice and UIScreen are
part of UIKit and are not available on macOS. If you have files using these, you’ll need to exclude them
from the macOS build.

In your project settings, under the “Build Phases” tab, find the file that’s causing the issue. Change its
settings to make it available for iOS only.

Step 5: Updating Code for Cross-Platform Compatibility

In some cases, you’ll need to update your code to use modifiers that are compatible with both platforms.
For example, instead of using navigationBarTitle, which is iOS-specific, use the new modifier instead:

struct PetPalGalleryView: View {

 …

 var body: some View {
 NavigationStack {
 …
 .navigationTitle("Pet Gallery")
 }
 }
}

3 0 9

11 . 3 L I S T

In this lesson, I’m going to introduce you to Lists in SwiftUI. We’ll explore how to display a collection of
data in a scrollable list. List view is loading its data lazily similar to LazyVStack. It is perfect for large data.

It’s worth noting that on iOS, Lists use UICollectionView under the hood (iOS 16+), and on macOS, they
use NSTableView. Be aware of performance considerations with NSTableView, especially when dealing
with large datasets or custom cell heights.

Setting Up Example Data

The example data I’m using comes from a Note class and a Folder class. Each Note has properties like
title, isFavorite, creationDate, color, and content. I’ve added a function to generate an array of sample
notes to work with. You’ll see this in action as we create our note list:

import SwiftUI
import Observation

@Observable class Note: Identifiable {

 var title: String
 var isFavorite: Bool
 let creationDate: Date
 var colorTag: Color
 var content: String

 static func examples() -> [Note] {
 [
 Note(title: "Shopping List",
 isFavorite: true,
 content: "1. Milk\n2. Eggs\n3. Bread",
 colorTag: .green),
 Note(title: "Meeting Agenda for Q4",
 isFavorite: false,
 content: "1. Project update\n2. Budget discussion\n3. Next steps",
 colorTag: .cyan),
 Note(title: "Ideas",
 isFavorite: true,
 content: "1. Write a novel and inspire millions of people \n2. Start
a podcast\n3. Learn a new language",
 colorTag: .orange),
]
 }
}

In addition, I have a Folder class that has a notes property that points to an array of Notes. This gives me
the notes that belong to this folder:

import Foundation
import Observation

@Observable class Folder: Identifiable {

310

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/11-3-list

 let id: UUID
 let creationDate: Date
 var name: String
 var notes: [Note]

 static func examples() -> [Folder] {
 [Folder(name: "Meeting Notes",
 notes: Note.examples()),
 Folder(name: "App Ideas",
 notes: [Note(title: "Reminder app",
 isFavorite: true,
 content: "Some amazing features for a reminder app",
 colorTag: .blue)])]
 }
}

Creating a List with Notes

We can construct a basic List to display our notes. The Note data conforms to the Identifiable protocol,
which makes it easier to work with List:

struct NoteListView: View {
 let notes = Note.examples()

 var body: some View {
 List(notes) { note in
 NoteRowView(note: note)
 }
 }
}

311

Customizing Note Rows

To make our list more informative, we’ll create custom row view for each note. For instance, if you want to
show the creation date below the note title, you can use a VStack. To add an icon for favorite notes, wrap
the VStack in an HStack and use a Spacer to push the icon to the right.

struct NoteRowView: View {

 let note: Note

 var body: some View {
 HStack(alignment: .firstTextBaseline) {
 VStack(alignment: .leading) {
 Text(note.title)
 Text(note.creationDate, style: .date)
 .font(.caption)
 .foregroundStyle(.gray)
 }
 Spacer()
 if note.isFavorite {
 Image(systemName: "heart.fill")
 .foregroundStyle(.pink)
 }
 }
 }
}

Adding Sections

Lists in SwiftUI allow you to organize items into sections. In the following, I added a section that shows all
the favorite notes:

struct NoteListView: View {
 @State private var notes: [Note] = Note.examples()

 var favoriteNotes: [Note] {
 notes.filter { $0.isFavorite }
 }

 var body: some View {
 List {
 ForEach(notes) { note in
 NoteRowView(note: note)
 }

 Section("Favorite Notes") {
 ForEach(favoriteNotes) { note in
 NoteRowView(note: note)
 }
 }
 }

 }
}

312

Navigation and Toolbars

To add navigation and toolbars, we’ll use a NavigationStackView and wrap our list within it. You can place
action buttons in the navigation bar or the bottom toolbar for better accessibility and user experience.

NavigationStack {
 List {
 ForEach(notes) { note in
 NoteRowView(note: note)
 }

 Section("Favorite Notes") {
 ForEach(favoriteNotes) { note in
 NoteRowView(note: note)
 }
 }
 }
 .navigationTitle("Notes")
 .toolbar(content: {

313

 ToolbarItem(placement: .primaryAction) {
 Button(action: {
 notes.append(Note(title: "New Note"))
 }, label: {
 Label("Add New Note", systemImage: "plus")
 })
 }
 })
}

I added a ´plus´ button in the toolbar, that adds a new note to the notes array.

SafeAreaInsets

Alternatively, you can add buttons in the safeAreaInsets.

.safeAreaInset(edge: .bottom) {
 Button(action: {
 notes.append(Note(title: "New Note"))
 }, label: {
 Label("Add New Note", systemImage: "plus")
 })
 .padding()
 .frame(maxWidth: .infinity)
 #if os(iOS)
 .background(Color(.systemGroupedBackground))
 #endif
}

On iOS you could also use the toolbar with a bottom bar placement.

314

11.3.1 ListStyle

In this lesson, I’m going to demonstrate the default styling options available for SwiftUI lists. We’ll
use the Notes array and construct a list with sections to show how different styles affect the layout:

struct NoteListStyleView: View {
 let notes = Note.examples()
 var body: some View {
 List {
 Section("All Notes") {
 ForEach(notes) {
 NoteRowView(note: $0)
 }
 }
 Section("Favorite Notes") {
 ForEach(notes) {
 NoteRowView(note: $0)
 }
 }
 }
 }
}

By default, SwiftUI provides a set of predefined styles that you can apply to your lists. Here’s how
you can apply the default style:

List {
 ...
}
.listStyle(.plain)

315

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/11-3-list/topics/11-3-1-liststyle

Now, let’s talk about the different list styles you can apply:

• Grouped Style: This style adds some insets and groups the content in visually distinct sections.

• Inset Grouped Style: Similar to the grouped style but with additional insets, giving it a more

pronounced sectioned appearance.

• Plain Style: If you prefer a minimalistic approach, the plain style removes most of the styling,

presenting the list items without any separators or backgrounds.

It’s worth noting that the default style may vary depending on the environment. For instance, if you place
your list inside a NavigationView and use it as a sidebar, the style will adapt to the sidebar appearance.

ListStyles for macOS

When you’re developing for macOS, be aware that some styles, like InsetGroupedListStyle and
GroupedListStyle, are not available.

On macOS, you have additional styles like BorderedListStyle, which is not available on iOS. You can also
use the .listRowBackground modifier to disable the alternating background colors for list rows, which can
add a nice touch to your macOS app.

List {
 ...
}
.listStyle(.bordered)
.alternatingRowBackgrounds(.disabled)

316

SidebarListStyle on macOS will add collapsable sections. If you hover with the mouse over the section
title a small toggle will appear:

11.3.2 List Row Background

To customise individual list row backgrounds, you can use modifiers such as .listRowBackground(). You
can attach a color directly to the ForEach loop to change the background color of all rows:

List {
 Section("All Notes") {
 ForEach(notes) {
 NoteRowView(note: $0)

 }
 .listRowBackground(Color.yellow)
 }
}

Now, suppose you’ve added a color property to your data model. In that case, you can use this to
dynamically change the background color of each row:

List {
 Section("All Notes") {
 ForEach(notes) {
 NoteRowView(note: $0)
 .listRowBackground($0.colorTag)
 }
 }
}

317

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/11-3-list/topics/11-3-2-list-row-background

Since the background modifier accepts a view, you could use different shapes like RoundedRectangle,
Ellipse, or Capsule:

List {
 ...

 Text("Make this special")
 .foregroundStyle(Color.white)
 .listRowBackground(
 Capsule()
 .fill(Color.indigo)
)
}

Customizing the List Background

Now, let’s change the background of the entire List. You might want to eliminate the default gray color
and add something more vibrant. I previously mentioned using .scrollContentBackground() for a
ScrollView, and it works similarly for a List:

List {
 …
}
.scrollContentBackground(.hidden)
.background(
 Image(“candies")
 .resizable()
 .scaledToFill()
 .ignoresSafeArea()
)

318

11.3.3 List Row Insets and Separators

When you’re working with SwiftUI’s List, you can customise the look and feel of your list rows by
adjusting insets and separators.

struct InspirationListView: View {
 let inspirations = NatureInspiration.examples()

 var body: some View {
 NavigationStack {
 List(inspirations) { inspiration in
 InspirationRow(inspiration: inspiration)
 }
 .navigationTitle("Inspirations")
 }
 }
}

If you want to change the insets of your list rows, you can use the .listRowInsets modifier. To demonstrate
the effect of this modifier, I’ll set the insets to zero:

List(inspirations) { inspiration in
 InspirationRow(inspiration: inspiration)
 .listRowInsets(.init(top: 0, leading: 0, bottom: 0, trailing: 0))
}

319

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/11-3-list/topics/11-3-3-list-row-insets-and-separators

Customising Separators

For separators, you have a few options. You can hide them completely:

.listRowSeparator(.hidden)

Or you can change their color and specify which edges to apply the color to:

.listRowSeparatorTint(.pink, edges: .bottom)

If you want to apply the color to all edges, you can omit the edges parameter.

Customizing Section Separators

In addition to individual row separators, you can also customize the separators between sections
using .listSectionSeparator. For instance, if you want to hide the separator for a specific section:

struct ContentView: View {
 let notes = Note.examples()

 var body: some View {
 List {
 Section("All Notes") {
 ForEach(notes) { note in
 NoteRowView(note: note)
 }
 }
 .listSectionSeparator(.hidden)

 Section("Favorite Notes") {
 ForEach(notes) { note in
 NoteRowView(note: note)
 }
 }
 .listSectionSeparator(.hidden)

3 2 0

 }
 .listStyle(.plain)
 }
}

Or if you want to change the color of a separator at the end of a section:

Section("All Notes") {
 …
}
.listSectionSeparatorTint(.pink)

With iOS 17 you can also change the spacing between sections with:

.listSectionSpacing(0)

3 21

11.3.4 Move and Delete

One of the best features of List in SwiftUI is the ability to interact with the items. Implementing
functionalities like swipe to delete, moving items, and selection is surprisingly straightforward.
Throughout the evolution of iOS, the implementation details have shifted, but I’ll walk you through the
most current and backward-compatible methods.

Swipe on Delete with onDelete

For the earliest iOS versions, you attach a modifier to ForEach. Here’s how you can implement the
deletion with a swipe:

struct NoteEditListView: View {
 @State private var notes: [Note] = Note.examples()
 var body: some View {
 List {
 ForEach(notes) { note in
 NoteRowView(note: note)
 }
 .onDelete(perform: delete)
 }
 }

 func delete(at offset: IndexSet) {
 notes.remove(atOffsets: offset)
 }
}

When you attach .onDelete, you receive an IndexSet which tells you which item to delete. I create a
delete function that takes in the IndexSet: delete function that takes in the IndexSet.

Reordering Lists with onMove

The .onMove modifier allows users to reorder items in a list. You can use it similarly to .onDelete:

ForEach(notes) { note in
 ...

3 2 2

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/11-3-list/topics/11-3-4-move-and-delete

}
.onMove(perform: move)

func move(from source: IndexSet, to destination: Int) {
 notes.move(fromOffsets: source, toOffset: destination)
}

Since iOS 16, you can reorder items directly without entering edit mode.

For iOS 15 and below, you need to use an edit button. In edit mode, the user can use drag indicators to
reorder the list.

NavigationStack {
 List {
 Section(“All Notes") {
 ForEach(notes) { note in
 NoteRowView(note: note)
 }
 }
 .onMove(perform: move)

 .onDelete(perform: delete)

 }
 .toolbar(content: {
 EditButton()
 })
}

3 2 3

On macOS, you can also use onMove, but swipe actions are not available:

EditActions

Since iOS 16 and macOS 13, you can replace onDelete and onMove with an easier solution. You can use
the editActions argument of ForEach like so:

struct NoteEditListView: View {

 @State private var notes: [Note] = Note.examples()

 var body: some View {
 List {
 Section("Notes") {
 ForEach($notes, editActions: [.move, .delete]) { $note in
 NoteRowView(note: note)
 }
 }
 }
 }
}

swipeAction

If you’re targeting iOS 15 or macOS 12 and above, you have the option to use .swipeActions. You can
add multiple custom buttons that are displayed on the leading and trailing edges.

In the following, a favorite and send button are shown when the user swipes from the leading edge:

List {
 ForEach(notes) { note in
 NoteRowView(note: note)
 .swipeActions(edge: .leading) {
 Button(action: {
 note.isFavorite.toggle()
 }, label: {
 Label("Favourite", systemImage: "heart.fill")
 })

3 2 4

 .tint(.pink)

 Button(action: {

 }, label: {
 Label("Send", systemImage: "location.fill")
 })
 .tint(.blue)
 }
 }
}

If you set allowsFullSwipe to true, a full swipe will automatically trigger the button action.

.swipeActions(edge: .leading, allowsFullSwipe: true) {
 …
}

You could also add a custom delete button to the trailing edge if you want to override the default
implementation.

Special Considerations for macOS

On macOS, swipe actions aren’t the norm. Instead, context menus are used. Here’s how you can add a
context menu for deletion:

ForEach(notes) { note in
 NoteRowView(note: note)
 .contextMenu(ContextMenu(menuItems: {
 Button(action: {
 delete(note: note)
 }, label: {

3 2 5

 Label("Delete", systemImage: "trash")
 })
 Button(action: {
 note.isFavorite.toggle()
 }, label: {
 Label("Favourite", systemImage: "heart.fill")
 })
 }))
}

This way, right-clicking on an item will present a menu for the deletion or toggling the favorite state.

11.3.5 List Selection

In this section, I’m going to show you how to select items in a SwiftUI List. You’ll learn how to handle
single and multiple selections, and we’ll delve into more complex data handling scenarios. This
knowledge will be particularly useful when building an app with a sidebar for folder selection, which then
displays a list of notes and a detail view for the selected note. But first, let’s tackle the basics of selection.

Creating a Note Selection List View

Imagine you have a collection of notes. You want to be able to select a note from a list. To start simple,
let’s use some example data:

struct NoteSelectionListView: View {

 let notes: [Note]
 @State private var selectedNote: Note? = nil

 var body: some View {
 List(notes, selection: $selectedNote) { note in
 NoteRowView(note: note)
 .tag(note)
 }

3 2 6

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/11-3-list/topics/11-3-5-list-selection

 }
}

Here, selectedNote is an optional Note because there might be situations where no note is selected, so
we initialize it to nil.

To create a list with selectable items, you use the List initializer that takes a selection parameter.

For this to work, your Note model must conform to Hashable. If you encounter an error, you’ll need to
override the hash(into:) function to use a unique property, like id.

Handling Selection Types

When you tap on an item in the list, you might notice that nothing happens. This is because the list uses
the id property for selection by default, but we’re passing a Note object to the selection binding. To
resolve this, you can use the .tag modifier on each row to specify that the selection should be based on
the Note object itself:

NoteRowView(note: note)
 .tag(note)

Multiple Selections

To handle multiple selections, you need to change your selection state to a Set:

@State private var selectedNote: Set<Note> = []

By default, a List allows only single selection. To enable multiple selections, you must enter edit mode.
You can add an edit button to your navigation bar:

.toolbar(content: {
 EditButton()
})

3 2 7

In edit mode, the list will show checkboxes, allowing you to select multiple notes.

Additionally, I am showing a “Delete All” button if the user is in edit mode and has selected one or more
notes. I am using the environment value for EditMode to check this conditionally:

List(selection: $selectedNote) {

 ForEach(notes){ note in
 NoteRowView(note: note)
 .tag(note)
 }
 #if os(iOS)
 EditListSubView(hasSelectedNotes: !selectedNote.isEmpty)
 #endif
}

I am using a subview to properly access the environment value inside the list:

struct EditListSubView: View {
 @Environment(\.editMode) var editMode
 let hasSelectedNotes: Bool

 var body: some View {

 if editMode?.wrappedValue.isEditing == true && hasSelectedNotes {
 Section {
 Button(role: .destructive,
 action: {

 }, label: {
 Label("Delete All", systemImage: "trash")
 })
 .foregroundColor(Color.red)
 }
 }
 }
}

3 2 8

Advanced Selection Handling

I am showing you another example where we want to select from a list of Folder objects. Additionally, I
want to allow the user to select options like“All Notes” or “Favorites”. For this to work, you’ll need to
rethink your data structure.

A common approach is to use an enumeration to encapsulate all selection types:

enum FolderSelectionType: Hashable {
 case all
 case favourites
 case folder(Folder)

 var displayName: String {
 switch self {
 case .all:
 return "All Notes"
 case .favourites:
 return "Favourite Notes"
 case .folder(let folder):
 return folder.name
 }
 }
}

With this enum, you can handle all selection cases with a single type. You then bind this enum to your list
selection:

struct FolderSelectionListView: View {

 @State private var folders: [Folder] = Folder.examples()
 @State private var selection: FolderSelectionType? = nil

 var body: some View {
 List(selection: $selection) {
 Section {
 Label("All Notes",

3 2 9

 systemImage: "rectangle.on.rectangle.circle.fill")
 .tag(FolderSelectionType.all)
 Label("Favourites", systemImage: "heart.circle.fill")
 .tag(FolderSelectionType.favourites)
 }

 Section("Your Folders") {
 ForEach(folders) { folder in
 Label(folder.name, systemImage: "folder")
 .tag(FolderSelectionType.folder(folder))
 }
 }
 }
 }
}

It is important to use the .tag modifier to match the selection type with the list’s identification mechanism.

Challenge 🖐 NavigationSplitView with Lists

In this section, I have a little challenge for you where you can put together a notes app. We have already
covered most of the necessary components in the previous lessons, so you can reuse them here.

Let’s break down the requirements for this challenge:

• On the left side of the app, we need a list that allows us to select different folders, all notes, or favorite
notes. This will serve as our sidebar.

• In the main content view, we will have another list that displays the selected note. When a note is
selected, it will be shown in the detail view. Here, you can make changes to the note’s content and
toggle its favorite status.

3 3 0

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/11-3-list/topics/%F0%9F%96%90%EF%B8%8F-challenge-navigationsplitview-with-lists

You might have noticed that the two lists, the sidebar, and the content view, have different styles. On
macOS, the sidebar uses a specific sidebar styling, while the content view uses an inset styling. The
good news is that SwiftUI automatically adapts these styles for iOS as well.

On iOS, the sidebar styling looks slightly different, but the functionality remains the same. When you
select a note, it appears in the content view, and you can navigate to the detail view from there.

Solution Overview

Let’s take a look at the solution I have prepared for you. I have reused most of the views we previously
worked on, such as the FolderSelectionListView. To make it work in this app, I needed to pass the
necessary data between the top-level view “NavigationListView” and all subviews.

I added the folder list selection view to the sidebar. This allows us to select a folder. In the content view, I
used the selected folder type to display the corresponding notes in a list view:

struct NavigationListView: View {

 @State private var folders = Folder.examples()
 @State private var folderSelection: FolderSelectionType? = nil
 @State private var selectedNote: Note? = nil

 var body: some View {
 NavigationSplitView {
 FolderSelectionListView(folders: $folders,
 selection: $folderSelection.animation())
 .navigationTitle("Folders")
 } content: {
 if let folderSelection {
 NoteSelectionListView(notes: notes(),

3 31

 selectedNote: $selectedNote)
 .navigationTitle(folderSelection.displayName)
 } else {
 ContentUnavailableView("Please select a folder",
 systemImage: "folder")
 }
 } detail: {
 if let selectedNote {
 NoteEditDetailView(note: selectedNote)
 } else {
 ContentUnavailableView("Please select a note",
 systemImage: "note")
 }
 }
 }
}

The folder selection list view now takes two bindings: one for the folders and another for the folder
selection type. This allows us to update the selected folder and the type of notes to display.

struct FolderSelectionListView: View {

 @Binding var folders: [Folder]
 @Binding var selection: FolderSelectionType?

 var body: some View {
 List(selection: $selection) {
 Section {
 …
 }

 Section("Your Folders") {
 …
 }
 }
 }
}

To make the preview work properly with the bindings, I made some changes. Inside the preview macro, I
added another struct to hold the state for the folder and selection type. This way, you can test the
selection in the preview.

#Preview {
 struct PreviewFolderSelectionListView: View {
 @State private var folders = Folder.examples()
 @State private var selectionType: FolderSelectionType? = nil

 var body: some View {
 FolderSelectionListView(folders: $folders,
 selection: $selectionType)
 }
 }

 return PreviewFolderSelectionListView()
}

I followed a similar approach for the node selection view. I created a selected note binding and passed it
to the notes. Again, I used an extra struct in the preview to hold some state and example data.

3 3 2

struct NoteSelectionListView: View {
 let notes: [Note]
 @Binding var selectedNote: Note?

 var body: some View {
 List(notes, selection: $selectedNote) { note in
 NoteRowView(note: note)
 .tag(note)
 }
 }
}

#Preview("Single Selection") {
 struct PreviewNoteSelectionListView: View {
 let notes: [Note] = Note.examples()
 @State private var selectedNote: Note? = nil
 var body: some View {
 NoteSelectionListView(notes: notes,
 selectedNote: $selectedNote)
 }
 }

 return PreviewNoteSelectionListView()
}

Showing the Correct Notes in the ContentView

Depending on the selection in the sidebar, I need to show the correspoding notes in the content view of
the NavigationSplitView:

NavigationSplitView {
 ...
} content: {
 if let folderSelection {
 NoteSelectionListView(notes: notes(),
 selectedNote: $selectedNote)
 } else {
 ContentUnavailableView("Please select a folder", systemImage: "folder")
 }

} detail: {
 ...
}

To handle the different selection scenarios, I used a function that checks for the selection type. If it’s set
to “favorite,” I display only the favorite notes. Otherwise, if a folder is selected, I pass the nodes from that
folder to the NoteSelectionListView.

func notes() -> [Note] {
 switch folderSelection {
 case .all:
 return allNotes
 case .favourites:
 return favoriteNotes
 case .folder(let folder):
 return folder.notes

3 3 3

 case nil:
 return []
 }
}

var allNotes: [Note] {
 folders.flatMap { folder in
 folder.notes
 }
}

var favoriteNotes: [Note] {
 folders.flatMap { folder in
 folder.notes.filter { $0.isFavorite }
 }
}

The list view doesn’t care about the specific data it receives. This approach also applies to sorting. You
can modify the notes function to include sorting based on specific properties.

Animations

To achieve smooth animations between different folder selections, you can add an animation to the
property that triggers the changes. By specifying an animation, the views will animate nicely when items
are added or removed.

NavigationSplitView {
 FolderSelectionListView(folders: $folders,
 selection: $folderSelection.animation())
}

It’s important to note that using one list and passing different data is a better solution for animations. If
you switch between completely different views, the default fade-in and out animation will be used.

Further Customisations

Although I didn’t add much interaction in this example, you can extend the app by adding context menus
on macOS or swipe gestures on iOS. Additionally, you can customise the styling of the lists to fit your
preferences.

In an upcoming lesson, we will explore tables and replace the middle section with a table. We will also
add a toggle to switch between grid and list layouts, allowing the user to choose their preferred layout.

Take inspiration from other apps to see how they utilize lists and explore more advanced filtering options.
While our example keeps things simple, other apps may implement more complex filtering using Core
Data or Swift Data.

3 3 4

11 . 4 S T R U C T U R I N G L I S T S

In this lesson, I’ll guide you through structuring your lists in SwiftUI by utilizing subviews such as sections
and disclosure groups. You’ll learn how to customize headers, add footers, and create collapsible
sections. This will be particularly useful if you have large and complex data to display.

11.4.1 Sections

First, I’ll demonstrate how to create a new SwiftUI view that structures a list with sections. Imagine you
have a note-taking app with different folders, each containing a list of notes:

@Observable class Folder: Identifiable {
 let id: UUID
 let creationDate: Date
 var name: String
 var notes: [Note]

 …
}

 You can represent each folder with a section in your list.

struct SectionExampleView: View {
 let folders = Folder.examples()
 var body: some View {
 List {
 ForEach(folders) { folder in
 Section(folder.name) {
 ForEach(folder.notes) { note in
 NoteRowView(note: note)
 }
 }
 }
 }
 }
}

3 3 5

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/11-4-structuring-lists
https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/11-4-structuring-lists/topics/11-4-1-sections

Customizing Section Headers and Footers

Now, let’s dive into customization. Say you dislike the default capitalized section headers. You can
change this by using a header closure instead of a simple string.

Section {
 ForEach(folder.notes) { note in
 NoteRowView(note: note)
 }
} header: {
 Text(folder.name)
 .textCase(.none)
}

You can also use other views than Text like Table. In the following, I changed to font size to large and
used black as the foreground color:

Section {
 …
} header: {
 Label(folder.name, systemImage: "folder.fill")
 .textCase(.none)
 .font(.title2)
 .foregroundColor(.black)
}

You can embed additional views in your section headers. For instance, adding a button within an HStack:

Section {
 …
} header: {
 HStack {

3 3 6

 Label(folder.name, systemImage: "folder.fill")
 .textCase(.none)
 .font(.title2)
 .foregroundColor(.black)

 Spacer()
 Button {

 } label: {
 Label("Add New Note", systemImage: "plus.circle.fill")
 }
 .labelStyle(.iconOnly)
 }
}

Moreover, you can include footers to provide additional information to the user:

Section {
 Text("This is inside the section")
} header: {
 Text("Header Title")
} footer: {
 Text("Some more information that helps the user understand what this does")
 .foregroundStyle(.red)
}

3 3 7

11.4.2 Collapsable Sections

In previous lessons, I showed you how sections display all items by default. However, when dealing with
numerous sections, users might want to collapse some to manage screen real estate better. Luckily,
SwiftUI provides straightforward methods to create collapsible sections. Let’s walk through the process
together.

 I’ll reuse the folder and note examples to keep things consistent. The key to creating collapsible sections
is to use a specific initializer for Section that allows us to control the expanded state.

Because I need to keep this state for each section, I am creating a subview for each section that holds
this state:

struct FolderSectionView: View {

 let folder: Folder
 @State private var isExpanded: Bool = true

 var body: some View {
 Section(folder.name,
 isExpanded: $isExpanded) {
 ForEach(folder.notes) { note in
 NoteRowView(note: note)
 }
 }
 }
}

I can then use this subview for the List view:

List {
 ForEach(folders) { folder in
 FolderSectionView(folder: folder)

3 3 8

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/11-4-structuring-lists/topics/11-4-2-collapsable-sections

 }
}
.listStyle(.sidebar)

Note that you have to use sidebar list style to see the toggles next to the section headers. For all other
styles collapsing is not available

Using DisclosureGroup for an Alternative Approach

Alternatively, you can use DisclosureGroup to achieve a similar collapsible effect. This allows you to
use multiple ForEach inside the list:

struct DisclosureListView: View {
 let folders = Folder.examples()

 var body: some View {
 List {
 ForEach(folders) { folder in
 DisclosureGroup(folder.name) {
 ForEach(folder.notes) { note in
 NoteRowView(note: note)
 }
 }
 }
 }
 }
}

3 3 9

Per default, all groups are shown in one section. But you can embed each DisclosureGroup in its section:

List {
 ForEach(folders) { folder in
 Section {
 DisclosureGroup(folder.name) {
 ForEach(folder.notes) { note in
 NoteRowView(note: note)
 }
 }
 }
 }
}

When the list appears all groups are initially collapsed. To control the initial state, DisclosureGroup also
takes an expanded state property. Just like with the Section, you’ll need to create separate subviews if
you want to control the expanded state of each DisclosureGroup individually.

The following example will show the first section expanded:

struct DisclosureListView: View {
 let folders = Folder.examples()

 var body: some View {
 List {
 ForEach(folders) { folder in
 Section {
 FolderSectionView(folder: folder,
 isInitiallyExpanded: folder == folders.first)
 }
 }
 }
 }
}

3 4 0

struct FolderSectionView: View {

 let folder: Folder
 let isInitiallyExpanded: Bool

 @State private var isExpanded: Bool = false

 var body: some View {
 DisclosureGroup(
 isExpanded: $isExpanded,
 content: {
 ForEach(folder.notes) { note in
 NoteRowView(note: note)
 }
 },
 label: {
 Label(folder.name, systemImage: "folder")
 }
)
 .onAppear(perform: {
 isExpanded = isInitiallyExpanded
 })
 }
}

By using either Section with the expanded initializer or DisclosureGroup, you can create collapsible
sections within your SwiftUI list. Remember to manage the expanded state individually for each section
to offer the best user experience. In the next lesson, we’ll explore how to handle hierarchical data
structures with multiple levels of nested sections.

11.4.3 Hierarchical Lists

When you’re setting up your list, you’ll notice that SwiftUI’s List has an initializer that accepts a children
parameter. This allows you to create deeply nested hierarchical lists.

Implementing the Data Model

Let’s dive into the data model. You’ll need a structure that has a property “children” to hold the nested
items. All items in this array must be of the same type to enable the nesting:

import Foundation
import Observation

@Observable class FileItem: Identifiable {
 var title: String
 let isFolder: Bool
 var children: [FileItem]? = nil
 let id = UUID()
}

3 41

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/11-4-structuring-lists/topics/11-4-3-hierarchical-lists

Creating the List

With the data model in place, you’ll set up your list. You’ll use the key path to point to the children
property, which represents the nested items. Each of these children may, in turn, have their own children
array, allowing for multiple levels of nesting.

You can also add a selection property to keep track of which item is selected. This will be an optional
property that holds the selected item’s ID.

struct HierarchicalListView: View {

 @State private var fileItems = FileItem.preview()
 @State private var selectedItem: FileItem.ID? = nil

 var body: some View {
 List(fileItems,
 children: \.children,
 selection: $selectedItem) { item in
 Label(item.title,
 systemImage: item.isFolder ? "folder" : "envelope")
 }
 }
}

Adding Static Elements

If you need to include static elements or multiple ForEach in your list, you’ll have to switch gears and use
OutlineGroup instead. This component also supports children and can be used within a List to create
complex hierarchical structures.

3 4 2

Here’s an example of how you might set this up:

struct DisclosureHierarchicalListView: View {

 @State private var fileItems = FileItem.preview()
 @State private var selectedItem: FileItem.ID? = nil

 var body: some View {
 List(selection: $selectedItem) {
 OutlineGroup(fileItems, children: \.children) { item in
 Label(item.title, systemImage: item.isFolder ? "folder" : "envelope")
 }

 Section {
 Button("Do something") {
 // do something
 }
 }
 }
 }
}

List with children and OutlineGroup will create the same-looking list UI.

By using SwiftUI’s List with the children property or OutlineGroup, you can create deeply nested,
hierarchical structures suitable for a variety of applications, including complex note-taking apps.
Remember to ensure that all nested items are of the same type, and feel free to include static elements or
multiple sections to create a rich and intuitive user interface.

3 4 3

11 . 5 F O R M

When you’re building most iOS apps, sticking with a List is typically sufficient. However, if you’re
venturing into macOS app development, taking a closer look at Form becomes more relevant.

On iOS, a Form essentially appears as a List with an insetGrouped style. So, if you’re solely focused on
iOS development, the Form may not seem as crucial. Yet, I’ll walk you through some scenarios, such as
user registration forms and settings views, where Form can be quite useful.

Creating a Form Example View

Forms are usually employed in scenarios where users need to input data, like in settings views. Let’s start
by creating a simple form with several input elements:

struct FormExampleView: View {

 @State private var text = ""
 @State private var number: CGFloat = 10
 @State private var isTrue: Bool = false

 var body: some View {
 Form {
 TextField("Enter Email", text: $text)
 Slider(value: $number) {
 Text("number \(Int(number))")
 }
 Picker("pick something", selection: $isTrue) {
 Text("true").tag(true)
 Text("false").tag(false)
 }
 Toggle("is True", isOn: $isTrue)
 }
 #if os(macOS)
 .padding()
 .frame(maxWidth: 350)
 #endif
 }
}

Form Styles

Form has two styles available:

• Column Style: Here, labels are in one column and inputs are in another. This is the default on macOS.

• Grouped Style: This style resembles a grouped List on iOS.

If you want to segment your form into sections, you can use the Section view. This works well for the
grouped style but might not look as good with the column style.

Form {
 ...
}
.formStyle(.grouped)

3 4 4

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/11-5-form

Form with Column Style that looks good

I want to show you now how to get a Form with a column style that looks well organised. For additional
structure, you can use LabeledContent to place labels next to elements, or even insert custom separators
like a thin line:

LabeledContent {
 Color.gray.frame(height: 1)
} label: {
 Text("Section")
 .bold()
 .padding(.top)
}

LabeledContent {
 Toggle("is True", isOn: $isTrue)
} label: {
 Text("Toggle")
 .bold()
}

3 4 5

Form with Grouped Style

If you are using the grouped style for forms, you can also structure the content with sections:

Form {
 TextField("Enter Email", text: $text)
 Slider(value: $number) {
 Text("number \(Int(number))")
 }

 Section("Section title") {
 Toggle("is True", isOn: $isTrue)

 Picker("pick something", selection: $isTrue) {
 Text("true").tag(true)
 Text("false").tag(false)
 }
 }
}

3 4 6

11.5.2 Example: Settings View

In this lesson, I want to show you how to create a settings view for a notes app using SwiftUI. We will be
working on both macOS and iOS, so we’ll explore different layout options for each platform.

macOS Settings View

On macOS, I’ll use the default form style to create the settings view. This style is commonly used in the
Settings app on macOS. Here’s an example of how we can set up the form:

struct SettingMacOSView: View {

 @State private var licenseKey: String = ""
 @AppStorage("selectedAppearance") var selectedAppearance = 0

 @State private var fontSize: CGFloat = 15
 @State private var showLineNumbers = false
 @State private var showPreview = true

 var body: some View {
 Form {
 LabeledContent("macOS Version", value: "2.2.1")
 .bold()
 TextField("License Key", text: $licenseKey)

 Picker(selection: $selectedAppearance) {
 Text("Default System").tag(0)
 Text("Light").tag(1)
 Text("Dark").tag(2)
 } label: {
 Text("Color Scheme")
 }
 #if os(macOS)
 .pickerStyle(.radioGroup)
 #endif

 …

 }
 .frame(maxWidth: 400)
 .padding()
 .frame(maxWidth: .infinity, maxHeight: .infinity)
 .preferredColorScheme(colorScheme())
 }

 func colorScheme() -> ColorScheme? {
 if selectedAppearance == 1 {
 return ColorScheme.light
 } else if selectedAppearance == 2 {
 return ColorScheme.dark
 } else {
 return nil
 }
 }
}

3 4 7

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/11-5-form/topics/11-5-2-example-settings-view

To show this form in the settings window, I am using it for the Settings group in the main app file:

@main
struct LayoutProjectApp: App {
 var body: some Scene {
 WindowGroup {
 NavigationListView()
 }

 #if os(macOS)
 Settings {
 TabView {
 SettingMacOSView()
 .tabItem { Label("System", systemImage: "gear") }
 Text("Something else")
 .tabItem { Label("Notes", systemImage: "note") }
 }
 }
 #endif
 }
}

3 4 8

iOS Settings View

On iOS, we’ll use sections to organize the settings. Here’s an example of how we can set up the settings
view for iOS:

struct SettingsIOSView: View {

 @State private var licenseKey: String = ""
 @AppStorage("selectedAppearance") var selectedAppearance = 0

 @State private var fontSize: CGFloat = 15
 @State private var showLineNumbers = false
 @State private var showPreview = true

 var body: some View {
 Form {
 Section("General") {
 LabeledContent("iOS Version", value: "2.2.1")
 .bold()
 TextField("License Key", text: $licenseKey)
 }

 Picker(selection: $selectedAppearance) {
 …
 } label: {
 Text("Color Scheme")
 }
 .pickerStyle(.inline)

3 4 9

 …
 }
 .preferredColorScheme(colorScheme())
 }

 func colorScheme() -> ColorScheme? {
 …
 }
}

On iOS, you can navigate to the settings view using a navigation stack or any other navigation pattern
that suits your app’s structure.

11.5.3 Example: Registration Form

In most apps, one common view that you’ll need is a user registration form. Let’s take a look at how we
can create a registration form for both macOS and iOS using SwiftUI.

macOS: Form with Column Style

When designing the registration form for macOS, we can utilize the Form container with a column form
style. This style provides a clean and organized layout. Here’s an example of what the form might look
like:

struct RegistrationView: View {

 @State private var email = ""
 @State private var password = ""
 @State private var repeatPassword = ""

 var body: some View {
 Form {
 Text("Create New Account")
 .font(.title3)
 .bold()

3 5 0

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/11-5-form/topics/11-5-3-example-registration-form

 TextField("Email", text: $email)
 TextField("Password", text: $password)
 TextField("Repeat Password", text: $repeatPassword)

 HStack {
 Button {

 } label: {
 Text("Skip")
 }
 Button {

 } label: {
 Text("Register")
 }
 .buttonStyle(.borderedProminent)
 .disabled(email.isEmpty)
 }
 }
 .padding()
 .frame(maxWidth: 400)
 .frame(maxWidth: .infinity, maxHeight: .infinity)
 }
}

iOS: Customized Registration Form

On iOS, we have the flexibility to create a more customized registration form. We can design the form
with unique styles and layouts. Here’s an example for iOS where I used ScrollView and VStack to layout
the registration fields like email and password textfields:

struct RegistrationiOSView: View {

 @State private var email = ""
 @State private var password = ""
 @State private var repeatPassword = ""

 var body: some View {
 NavigationStack {
 ScrollView{
 VStack(alignment: .leading){
 Text("Enter Your Email")
 TextField("Email", text: $email)
 .padding(.bottom, 30)

 Text("Enter Your New Password")
 TextField("Password", text: $password)
 TextField("Repeat Password", text: $repeatPassword)
 .padding(.bottom, 50)

 HStack {
 Button {

 } label: {
 Text("Skip")
 .frame(maxWidth: .infinity)
 }
 .buttonStyle(.bordered)

 Button {

3 51

 } label: {
 Text("Register")
 .frame(maxWidth: .infinity)
 }
 .buttonStyle(.borderedProminent)
 .disabled(email.isEmpty)
 }
 }
 .textFieldStyle(.roundedBorder)
 }
 .contentMargins(20)
 .navigationTitle("Create New Account")
 .background(Color.mint.gradient.opacity(0.7))
 }
 }
}

Creating a user registration form is an essential part of many apps. Whether you prefer the clean and
organized layout of a form with a column style on macOS or the customized and visually appealing
design on iOS, SwiftUI provides the tools to create a user-friendly registration experience. Choose the
style that best suits your app’s needs and get started on building a functional and visually pleasing
registration form.

11.5.4 Example: Inspector

In this lesson, we will explore how to create an inspector view using the Form container in SwiftUI. The
inspector view allows you to display additional details or settings for a specific item, such as a note in a

3 5 2

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/11-5-form/topics/11-5-4-example-inspector

note-taking app. We’ll also discuss how to adapt the inspector for different presentation styles on iOS
and macOS.

In the following, I have a view that shows the Note information. You can change the title and content of
the note:

struct NoteEditView: View {
 @State private var note = Note.example()
 @State private var fontSize: CGFloat = 15
 @State private var isPresentingInspector = false

 var icon: String {
 #if os(macOS)
 "sidebar.trailing"
 #else
 "slider.horizontal.3"
 #endif
 }

 var body: some View {
 List {
 Section("title") {
 TextField("title", text: $note.title)
 }

 Section("Notes") {
 TextEditor(text: $note.content)
 .font(.system(size: fontSize))
 }

 Toggle(isOn: $note.isFavorite) {
 Text("is Favourite")
 }
 }
 .inspector(isPresented: $isPresentingInspector) {
 EditorView(fontSize: $fontSize)
 .inspectorColumnWidth(min: 200, ideal: 400, max: 500)
 }
 .toolbar(content: {
 Toggle(isOn: $isPresentingInspector) {
 Label("Show Note Display Settings", systemImage: icon)
 }
 })
 }
}

In the toolbar is a button to toggle the isPresentingInspector property which determines if the inspector
is open or closed. The content of the inspector is the following EditorView. I am passing the fontSize with
a Binding. This allows to change the fontSize in the inspector. In the above NoteEditView this property is
then used to set the font size of the note content text.

struct EditorView: View {
 @Binding var fontSize: CGFloat
 @State private var showLineNumbers = false
 @State private var showPreview = true

 var body: some View {
 Form {
 Slider(value: $fontSize) {
 Text("Point Size \(Int(fontSize))")

3 5 3

 }

 Section("Display") {
 Toggle(isOn: $showLineNumbers, label: {
 Text("Show Line Numbers")
 })
 Toggle(isOn: $showPreview, label: {
 Text("Show Preview")
 })
 }
 }
 }
}

When you open the inspector on iOS, the content of the inspector is presented as a sheet:

On macOS, the inspector will open a column on the side of the main content. For the container in the
inspector view, I am using Form, because this will give me a very specific look on macOS. You can see
that Form with grouped form style is used:

3 5 4

11 . 6 TA B L E

The last system container I want to dive into is the Table. If you’ve worked with macOS, you might be
familiar with tables, or NSTableView from AppKit, which you see in applications like Finder. These tables
allow you to sort by different columns such as date, creation date, or file size. You can also adjust the
width of these columns and make selections, even multiple at a time.

Adding context menus is another powerful feature that lets you perform actions like moving items to the
bin, opening with different applications, or tagging. You can leverage this functionality with tables in
SwiftUI, bringing a rich feature set to your app’s UI.

However, it’s important to note that SwiftUI’s Table doesn’t offer all the same capabilities as the
underlying NSTableView. For instance, reordering or hiding columns isn’t something you can currently do
in SwiftUI.

Tables on iPad and iPhone

Tables aren’t just for macOS; you can use them on iPad as well. However, when you bring tables to the
iPhone, they will appear more like a list, showing only the first column. This is something to keep in mind
when you’re designing a multi-platform app—you’ll need to adapt your UI accordingly.

3 5 5

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/11-6-table

11.6.1 Creating a Table with SwiftUI

I will again use the Note class as an example that I’m going to display in a Table.

Here’s how you can initialize a Table:

struct TableExampleView: View {
 let notes = Note.examples()

 var body: some View {
 Table(notes) {
 // Define columns here
 }
 }
}

In the Table initializer, you pass in an array of data just like you would with a List. Then, you define your
columns. With Table, you have specific types such as TableRow or TableColumn to work with. For
example, you can create a column with TableColumn using the text and value initializers:

TableColumn("Title", value: \Note.title)

Here, the first parameter is the header text for the column, and the second is the key path to the property
you want to display. This property needs to be of type String.

In the following, I am showing a table with 2 columns for the title and content of the Note data:

Table(notes) {
 TableColumn("Title", value: \Note.title)
 TableColumn("Content", value: \Note.content)
}

3 5 6

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/11-6-table/topics/11-6-2-table-styling

Displaying Multiple Lines and Custom Content

If you want to display content that spans multiple lines, you might run into some limitations. The Table
doesn’t like to accommodate larger content, so you’ll often be sticking with a single line for each cell.

However, you can still include different types of content. For instance, if you have a date property, you
can use a TableRow initialiser with content closure. This allows you to get the data instance and format it
with a Text view. In the following, I am showing 2 columns for the creation date and isflvorite property of
Note:

Table(notes) {

 TableColumn("Title", value: \Note.title)
 TableColumn("Content", value: \Note.content)

 TableColumn("Created At") { note in
 Text(note.creationDate, style: .date)
 }

 TableColumn("Favorite") { note in
 Image(systemName: "heart")
 .foregroundStyle(note.isFavorite ? Color.red : Color.clear)
 }
}

The order of the columns is determined by the order of the TableColumns that you specify.

Table uses TableRowContent, not standard View, so modifiers and views might differ from what you’re
used to with other SwiftUI views. For example, to set a column to a specific width, you can use the width
modifier:

TableColumn("Content", value: \Note.content)
 .width(200)

In the next lesson, I’ll delve deeper into styling and customizing the Table to make it fit perfectly within
your app’s design. Stay tuned!

3 57

11.6.2 Table Styling

When you’re working with tables in SwiftUI, you might find that the default look doesn’t quite fit the
aesthetic of your app. Luckily, you can tweak the appearance to a certain extent. Let’s dive into some
styling options that can help you customize your tables.

Table Styles

Moving on to table styles, you have a couple of options to choose from:

• Bordered: This style gives your table clear borders around each cell (macOS only)

• Inset: The inset style adds some spacing around the edges of the table, so the alternating row

backgrounds don’t touch the sides.

If you prefer to disable the alternating row background, the approach has changed a bit. Instead of a
single modifier, you now use two:

Table(notes) {
 ...
}
.tableStyle(.bordered)
.alternatingRowBackgrounds(.disabled)

With these modifiers, your table will have a more uniform look without the alternating backgrounds.
Unfortunately, there isn’t a built-in way to remove the separator lines between rows.

3 5 8

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/11-6-table/topics/11-6-2-table-styling

Column Width Customization

First up, let’s talk about column width. You can set a fixed column width with:

TableColumn("Content", value: \Note.content)
 .width(200)

Or allow the user to change the width by specifying columns with minimum, ideal, and maximum values.
For example, if you’re dealing with a column that displays favorite notes, you might want to set it like this:

TableColumn("Favorite") { note in
 ...
}
.width(min: 20, ideal: 40, max: 80)

With these settings, the favorite column won’t expand beyond 80 points in width, ensuring your table
remains neatly organized.

Alignment for Table Columns

If you want to change the alignment of a view inside the column, you can use a flexible frame. For
example, I can achieve a center alignment of the heard icon like so:

TableColumn("Favorite") { note in
 if note.isFavorite {
 Image(systemName: "heart.fill")
 .foregroundStyle(.pink)
 .frame(maxWidth: .infinity, alignment: .center)
 }
}

This is more of a workaround. Note that the header remains leading aligned and a solution to change this
behavior does not currently exist.

3 5 9

Hiding the Table Header

Lastly, you might want to remove the table header for a cleaner look. Simply add the following modifier
after your table definition:

Table(notes) {
 ...
}
.tableColumnHeaders(.hidden)

Selection and Custom Shape Styles

If your table includes icons, you might face a situation where the default selection color clashes with your
icons. To address this, you can define a custom shape style. In the below example on the left, you can
see the pink heart icon in contrast to the blue selected row. On the right, I used a custom shape style.
The heart icon for the selected row is dimmed down. All other icons like in the last row show the higher
contact pink heart icon.

Here’s how you can create a custom shape style for your favorite icons:

struct FavoriteShapeStyle: ShapeStyle {
 func resolve(in environment: EnvironmentValues) -> some ShapeStyle {
 if environment.backgroundProminence == .increased {
 return AnyShapeStyle(.secondary)
 } else {

3 6 0

 return AnyShapeStyle(.pink)
 }
 }
}

Inside your custom shape style, you can check the environment.backgroundProminence and decide if
you want to use a secondary style or your chosen color, like pink or red, for the icons.

To apply your custom style to a view, you would use:

struct TableStylingView: View {
 let notes = Note.examples()
 @State private var selectedNote: Note.ID? = nil

 var body: some View {
 Table(notes, selection: $selectedNote) {
 …

 TableColumn("Favorite") { note in
 if note.isFavorite {
 Image(systemName: "heart.fill")
 .foregroundStyle(FavoriteShapeStyle())
 }
 }
 }
 }
}

11.6.3 Edit Table Data

So far, you’ve learned how to display static data within tables. But what if you want to make changes to
that data? Unlike lists, where you can pass a binding to interact with e.g. text fields, tables don’t offer that
same flexibility directly. You might be wondering, “Can I edit the data in a table at all?” The answer is yes,
but we’ll need to approach it differently.

Context Menus to the Rescue

One solution is to incorporate context menus into your table. You’ll use the same data model as in the
previous examples, but this time, declare your data array using @State private var to ensure you can
modify it.

Now, the tricky part is figuring out where to add your context menu. Thankfully, SwiftUI provides an
initializer for tables that gives you access to the rows. It’s slightly different from what you’re used to
because it requires specifying the type of data you’re working with. This is essential so that SwiftUI
knows how to map your data to the columns.

struct TableEditView: View {
 @State private var notes = Note.examples()

 var body: some View {
 Table(of: Note.self) {
 TableColumn("Title", value: \Note.title)
 …

3 61

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/11-6-table/topics/11-6-3-edit-table-data

 } rows: {
 ForEach($notes) { $note in
 TableRow(note)
 }
 }
 }
}

Now that you have access to the individual TableRows, you can apply a context menu. In the following, I
added a Toggle for the favorite property and a delete button:

TableRow(note)
 .contextMenu {
 Toggle("Favorite", isOn: $note.isFavorite)
 Button(action: {
 if let index = notes.firstIndex(of: note) {
 notes.remove(at: index)
 }
 }, label: {
 Label("Delete", systemImage: "trash")
 })
 }

With this setup, a right-click on a row will reveal the context menu with “Delete” and “Favorite” options.
The “Favorite” toggle will allow you to mark a note as a favorite, changing its state in real time.

Editing Notes with a Detail View

Another approach for editing data is to select a row and display its details in an inspector panel or
present a sheet with editable fields. This method provides a more detailed view for making changes and
is particularly useful for complex data.

In the next lesson, I’ll show you how to select rows in a table, you can then use these selected values to
open a detail view.

3 6 2

11.6.4 Selecting Table Rows

Tables in SwiftUI allow you to select one or multiple rows, just like Lists. The mechanism for selection is
very similar, utilizing the same selection and binding properties.

Single-Selection

Let’s dive into an example. Imagine you’re building an app with a table view that displays folders, and
each folder contains notes.

You want to be able to select these folders within your table. In the following, I have a table showing an
array of folders with 3 columns:

struct TableSelectionView: View {

 @State private var folders = Folder.examples()

 var body: some View {
 Table(folders) {
 TableColumn("Title", value: \Folder.name)
 TableColumn("Created At") { folder in
 Text(folder.creationDate, style: .date)
 }
 TableColumn("Notes") { folder in
 Text(folder.notes.count, format: .number)
 }
 }
 }
}

Next, you’ll need another state variable for the selected folder:

@State private var selectedFolderID: Folder.ID? = nil

You must ensure that selectedFolderID is of the same type as the id property specified in the Identifiable
protocol for your folder type. When you’re working with a Table, it’s important to use the correct type for

3 6 3

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/11-6-table/topics/11-6-3-edit-table-data

the ID. Unlike Lists, where you can use tags or the id property to specify selection, Tables manage
everything automatically. When setting up your table, you’ll bind it to the selectedFolderID:

Table(folders, selection: $selectedFolderID) {
 …
}

Table with NavigationSplitView

With this setup, you can tap on a row to select a folder. This selection could then be used to display
details in an inspector view, or perhaps in a navigation split view where the table is in the sidebar.

In the following, I am showing a table of folders in the sidebar:

struct TableSelectionView: View {

 @State private var folders = Folder.examples()
 @State private var selectedFolderID: Folder.ID? = nil

 var body: some View {
 NavigationSplitView {
 Table(folders, selection: $selectedFolder) {
 …
 }
 } detail: {
 // show notes for selected folder
 }

 }
}

When the user selects a folder, I display a list of notes for this folder in a detail view:

3 6 4

if let selectedFolderID,
 let folder = folders.first(where: { $0.id == selectedFolderID }){
 List(folder.notes) {
 NoteRowView(note: $0)
 }
 .navigationTitle(folder.name)
}

Multiple-Row Selection

If you want to enable multiple selections, you’ll change the type of your selection state from a single
Folder.ID to a Set<Folder.ID>:

@State private var selectedFolders: Set<Folder.ID> = []

 Table(folders, selection: $selectedFolderID) {
 …
 }

Then, you update your table to work with this new selection state. In the UI, you can select multiple
folders by tapping on them while holding the shift key, for example. You could also add a context menu to
perform actions with the selected items, like deleting multiple folders at once.

On iOS, you would need to use EditButton and editMode to allow multiple selections which is the same
mechanism as for List.

3 6 5

11.6.5 Sorting and Filtering

When you dive into SwiftUI’s Table, you’ll quickly realize that sorting is one of its most impressive
features. However, managing the data for sorting isn’t as straightforward as you might hope, especially
when you’re not dealing with simple strings.

I am going to use the same Note data as in the previous sections:

struct TableSortingExampleView: View {

 @State private var notes = Note.examples()

 var body: some View {
 Table(notes) {
 TableColumn("Title", value: \Note.title)
 TableColumn("Content", value: \Note.content)

 TableColumn("Created At”) { note in
 Text(note.creationDate, style: .date)
 }

 TableColumn("Favorite") { note in
 Image(systemName: "heart.fill")
 .foregroundStyle(note.isFavorite ? Color.red : Color.clear)
 }
 }
 }
}

First, you need to define a @State private var sortOrders which is an array of KeyPathComparator. This
array allows you to specify multiple sorting criteria. For instance, you might want to sort notes by whether
they’re marked as favorite and then by creation date or title if there’s a tie.

@State private var sortOrders = [KeyPathComparator(\Note.title,
 order: .reverse)]

In your Table, you bind the sortOrder to this state variable:

Table(note, sortOrder: $sortOrders) {
 …
}

When you tap on the table’s header, you’ll see an arrow indicating that you can sort the items. However,
the Table doesn’t sort the data for you; it merely reflects the order of the data in your notes array. The
sortOrders binding captures the user’s intent, but you need to sort the notes array yourself.

3 6 6

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/11-6-table/topics/11-6-5-sorting-and-filtering

Handling User Interaction for Sorting

To react to sorting changes, you’ll use the .onChange modifier on your sortOrders. When the user
interacts with the table’s header, the sortOrders value changes, and you can then sort your notes array
accordingly.

Table(note, sortOrder: $sortOrders) {
 …
}
.onChange(of: sortOrders) { oldValue, newValue in
 notes.sort(using: newValue)
}

Keep in mind that your notes array must be mutable, so you should declare it as @State.

When you run your app and tap on a header, your list will now change its sorting order, allowing you to
sort ascending or descending based on the property you tapped.

Sorting by Date

When it comes to sorting notes in a table, one of the most common requirements is to sort by the
creation date. You might want your users to easily view the most recent notes or perhaps the oldest ones
first. Here’s how you can implement sorting by creation date within your Table:

TableColumn("Created At",
 value: \Note.creationDate) { note in
 Text(note.creationDate, style: .date)
}

The TableColumn initializer takes a value parameter, which is a key path to the property you want to sort
by—in this case, \Note.creationDate.

When a user taps on the header of the creation date column, the sortOrders binding will update and you
can update the notes array.

3 6 7

Sorting Non-String Values

When it comes to sorting non-string values in a Table, you might run into some challenges. SwiftUI’s
Table prefers to sort using strings because it relies on alphabetical order. However, what if you have
Boolean values or custom types, like enums? Let’s look at how you can work around these limitations.

For Boolean values, SwiftUI doesn’t natively know how to sort them in a Table. You can’t directly use a
Boolean property in the value parameter of a Table column because SwiftUI won’t know how to handle
the sorting interaction. The trick is to convert these Boolean values into strings.

Here’s how you can create a computed property to convert a Boolean into a string for sorting purposes:

@Observable class Note: Identifiable {

 var title: String
 var isFavorite: Bool
 let creationDate: Date
 var colorTag: Color
 var content: String

 var isFavoriteFormatted: String {
 isFavorite ? "favorite" : "not"
 }

}

And use it to create a TableColumn with a value property that handles the sorting selection:

TableColumn("Favorite",
 value: \Note.isFavoriteFormatted) { note in
 Image(systemName: "heart.fill")
 .foregroundStyle(note.isFavorite ? Color.red : Color.clear)
}

This approach doesn’t affect what’s displayed in your Table—it’s strictly for sorting. The actual values
(“Favorite” and “Not Favorite”) are not shown to the user but are used internally by SwiftUI to sort the
notes based on their favorite status.

3 6 8

If you have an enum or a custom type, you can use a similar strategy by mapping these to string values.
For enums, you can leverage the raw value if it’s a string or use a computed property to return a string
representation:

enum NoteCategory: String {
 case work
 case personal
 case ideas
}

@Observable class Note: Identifiable {
 …
 var category: NoteCategory

 var categoryAsString: String {
 return category.rawValue
 }

}

and use this computed property for the TableColumn value parameter:

TableColumn("Category", value: \.categoryAsString)

By providing these string representations, you ensure that the sorting mechanism in SwiftUI’s Table can
understand and correctly sort your data. Remember to create these string representations in a way that
reflects the intended sorting order, as they will be sorted alphabetically.

In conclusion, when dealing with non-string values for sorting in a Table, you’ll often need to bridge the
gap by providing string representations that SwiftUI can use for sorting. With these workarounds, you can
sort practically any type of data in your Table.

Filtering With Table

Filtering is another feature that depends on your notes array. You could introduce a search text field and
use the .searchable modifier to update the notes array whenever the search text changes.

3 6 9

First, I declare a state property for the search property and use the searchable modifier to show
the search textfield in the toolbar:

@State private var searchText = ""

Table(notes, sortOrder: $sortOrders) {
 ...
}
.searchable(text: $searchText)

To manage both sorting and filtering, you might have allNotes and filteredAndSortedNotes arrays. You
would filter and sort allNotes to get filteredAndSortedNotes, which is what you display in your table.

Here’s a basic example of handling a search text change:

struct TableSortingExampleView: View {

 @State private var searchText = ""
 @State private var sortOrders = [KeyPathComparator(\Note.title, order: .reverse)]
 @State private var notes = Note.examples()

 private var filteredAndSortedNotes: [Note] {
 var result = [Note]()

 if !searchText.isEmpty {
 result = notes.filter { $0.title.contains(searchText) }
 } else {
 result = notes
 }

 result.sort(using: sortOrders)
 return result
 }

 var body: some View {
 Table(filteredAndSortedNotes, sortOrder: $sortOrders) {
 …
 }
 .searchable(text: $searchText)
 }
}

If your data arrays are large, avoid doing these array operations for filtering, as it can slow down your
app. Instead, consider using Swift’s observation features or Core Data, which provide more efficient ways
to handle large datasets and perform filtering and searching operations.

That covers sorting and filtering in a nutshell. If you’re looking to implement more complex searching and
filtering, like using search tokens or scopes, here are some additional resources:

• How to use Search Scope in SwiftUI to improve search on iOS and macOS

• Search Tokens in SwiftUI: How to implement advanced search in iOS and macOS 

3 7 0

https://www.swiftyplace.com/blog/how-to-use-search-scopes-in-swiftui-to-improve-search-on-ios-and-macos
https://www.swiftyplace.com/blog/search-tokens-swiftui-how-to-implement-advanced-search-in-ios-and-macos

11.6.6 DisclosureTableRow

When you’re dealing with complex data structures in your SwiftUI app, you might want to organize your
data with more hierarchy. Tables in SwiftUI can be used for this purpose, especially when you want to
create sections using disclosure groups (macOS 14, iOS 17+).

However, you need to be aware that tables are designed to work with consistent data types across all
rows due to their columnar nature. I cannot for example use them for the Folder and Note data from the
previous sections.

Working with Complex Data Types

Imagine you have a set of items, such as files and folders in a file system. You want to represent these in
a table where you can expand and collapse sections to show or hide the contents of a folder.

@Observable class FileItem: Identifiable {

 var title: String
 let isFolder: Bool
 var children: [FileItem]? = nil
 let id = UUID()
}

Here, FileItem is a data type that represents either a file or a folder, identifiable with an id, and has an
optional children array for folders to hold their nested contents.

3 7 1

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/11-6-table/topics/11-6-6-disclosuretablerow

Implementing Disclosure Groups in Tables

To create a table with disclosure groups, you’ll need to initialize the table with both columns and rows.
You can define the columns based on the properties of your data type.

struct TableDisclosureView: View {
 let fileItems = FileItem.preview()
 var body: some View {
 Table(of: FileItem.self) {
 TableColumn("Title") { item in
 Label(item.title,
 systemImage: item.isFolder ? "folder.fill" : "envelope")
 }
 } rows: {
 ForEach(fileItems) { item in
 DisclosureTableRow(item) {
 ForEach(item.children ?? []) { subItem in
 TableRow(subItem)
 }
 }
 }
 }
 }
}

In the example above, you use a ForEach to iterate over the fileItems, and for each item, you create a
DisclosureGroup. If the item has children, you iterate over them to create individual rows.

Limitations of Tables with Hierarchical Data

While tables can be useful for creating hierarchical views, they come with limitations. Since tables expect
the same data type for all rows, you can’t easily represent different types of data in different rows if they
need to be displayed in a specific columnar format.

For example, if you’re trying to represent a notes and folders structure similar to a note-taking app, it
might not be the best fit for a table. The table expects each row to have the same columns, which can be
restrictive if your notes and folders have different properties.

Example: Table of Tasks with Subtasks

A good example for Table with collapsable sections is a list of tasks with subtasks. The Task data has
information about the name, priority an due date of the task. You could also split up a task into multiple
subtasks:

struct Task: Identifiable {
 let id = UUID()
 var name: String
 var subTasks: [Task] = []
 var isDone: Bool = false
 var priority: Priority
 var dueDate: Date = Date()
}

3 7 2

This data can be a good fit to show in a Table, where we see all the different properties like due date in a
dedicated column:

struct TaskTableSectionsView: View {

 @State private var tasks = Task.examples()
 @State private var sortOrders = [KeyPathComparator(\Task.name, order: .forward)]

 var body: some View {
 Table(of: Task.self, sortOrder: $sortOrders) {
 TableColumn("name", value: \.name)
 TableColumn("is Done") { task in
 Image(systemName: task.isDone ? "checkmark.circle.fill" : "circle")
 .foregroundStyle(task.isDone ? Color.accentColor : Color.gray)
 }

 TableColumn("Priority") { task in
 Text(task.priority.rawValue)
 .bold()
 .foregroundStyle(task.priority.color)
 }

 TableColumn("Due Date", value: \Task.dueDate) { task in
 Text(task.dueDate, style: .date)
 }
 } rows: {
 ForEach(tasks) { task in
 DisclosureTableRow(task) {
 ForEach(task.subTasks) { subTask in
 TableRow(subTask)
 }
 }
 }
 }
 .onChange(of: sortOrders) { oldValue, newValue in
 tasks.sort(using: newValue)
 }
 }
}

3 7 3

11.6.7 Cross-platform

In previous lessons, I’ve focused on showcasing tables within macOS and their distinctive look. However,
it’s time to expand our horizons and see how these tables appear on iOS and iPadOS. When you’re
working with an iPad in full screen, you can achieve a look that’s quite similar to macOS. Let’s dive in.

Setting Up a Cross-Platform Table View

For this example, we’ll use a basic table example with the notes data:

let notes = Note.examples()

Table(notes) {
 TableColumn("Title") { note in
 Text(note.title)
 .font(.headline)
 }

 TableColumn("Content", value: \Note.content)
 TableColumn("Created At") { note in
 Text(note.creationDate, style: .date)
 }
}

The appearance of the table on iPad depends on where it is used and in particular the environment value
for horizontal size class. To demonstrate the difference I will place the same table inside the sidebar and
content of a NavigationSplitView:

struct CrossplatformTableView: View {
 var body: some View {
 NavigationSplitView {
 AdaptedNoteTableView()
 } detail: {
 AdaptedNoteTableView()
 }
 }
}

3 74

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/11-6-table/topics/11-6-7-crossplatform

On the Mac, all table columns are shown. On the iPhone, which uses compact mode, the table collapses
and only the first table column is shown. In the above screenshot, you can see the list of note titles. The
table looks the same as if I would have used a SwiftUI List.

On the iPad in landscape mode, you can see the sidebar and content of the NavigationSplitView
simultaneously. In the sidebar, SwiftUI uses a compact size class and the table is shown as a list. In the
content, where there is ample space, the size class is regular and all columns are shown in a Table layout:

Adapting the Table for Compact Mode

I want to adapt the table for the iPhone that means for compact mode. The key property to work with
here is the horizontalSizeClass, which is available from the @Environment. By checking the
horizontalSizeClass, you can tailor the content for the first column. If the size class is compact, you’ll
know the screen will only show this column. In this case, I am showing just the note’s title and timestamp:

struct AdaptedNoteTableView: View {

 let notes = Note.examples()
 @Environment(\.horizontalSizeClass) var horizontalSizeClass

 var body: some View {
 Table(notes) {
 TableColumn("Title") { note in
 VStack(alignment: .leading) {
 Text(note.title)
 .font(.headline)
 if horizontalSizeClass == .compact {
 Text(note.creationDate, format: .dateTime)
 .foregroundStyle(.gray)
 }

3 7 5

 }
 }

 TableColumn("Content", value: \Note.content)
 TableColumn("Created At") { note in
 Text(note.creationDate, style: .date)
 }
 }
 }
}

This approach is quite elegant because, on an iPhone, the table looks and feels like a list, which is a
familiar interface element for iPhone users. By leveraging the horizontalSizeClass, you can create a single
SwiftUI view that intelligently adapts to the device it’s on, ensuring your app provides an optimal user
experience whether on an iPhone, iPad, or Mac.

3 76

Challenge 🖐 Layout Variations

It’s time for another challenge. This time, I want you to take the notes folder app you’ve already created
to the next level. We’ve been using a list for the sidebar, but now I’d like you to introduce the ability for
the user to switch between different layouts for the content area, where you display the notes.

Your task is to add a picker to the toolbar that allows switching between a list, a table, and a grid layout.
When the user selects “Table” from the picker, they should see the notes arranged in a table format.
Remember, your app should still handle selection properly across different layouts.

If you’re a bit rusty on implementing lazy grids, particularly adaptive ones, this is an excellent opportunity
to review that material. The main focus, however, is to implement the table view for the notes and add the
toolbar picker to enable layout switching.

3 7 7

https://learn.swiftyplace.com/courses/the-ultimate-swiftui-layout-course/lessons/11-6-table/topics/%F0%9F%96%90%EF%B8%8F-challenge-switching-layout

Solution Walkthrough

Okay, let me walk you through one possible solution. In the main view, I created a picker with an enum for
the display styles: grid, table, and list. I used a computed property to determine which icon to show for
each style.

enum DisplayStyle: CaseIterable, Identifiable {
 case grid
 case table
 case list

 var icon: String {
 switch self {
 case .grid: return "square.grid.2x2"
 case .table: return "tablecells"
 case .list: return "list.bullet"
 }
 }
 var id: Self { return self }
}

This property is then used in a @State property for the picker. The picker is added to the toolbar with a
segmented display style.

struct NavigationListView: View {

 …
 @State private var displayStyle = DisplayStyle.table

 var body: some View {
 NavigationSplitView {
 FolderSelectionListView(folders: $folders,
 selection: $folderSelection.animation())
 .toolbar(content: {
 ToolbarItem(placement: .secondaryAction) {
 Picker("", selection: $displayStyle) {
 ForEach(DisplayStyle.allCases) {
 Image(systemName: $0.icon)
 }
 }
 .pickerStyle(.segmented)
 }
 })

 } content: {
 // conditionally check which layout to show from grid, table or list
 } detail: {
 …
 }
 }
}

Within the content view, I used a switch case to determine which layout to display based on the selected
display style. Regardless of the style, I always passed the correct data to the views and maintained the
bindings to the selected note. This way, even if the user switches layouts, the selected note remains
consistent.

3 7 8

NavigationSplitView {
 ...
} content: {
 if let folderSelection {
 Group {
 switch displayStyle {
 case .grid:
 NoteSelectionGridView(notes: notes(),
 selectedNote: $selectedNote)
 case .table:
 NoteSelectionTableView(notes: notes(),
 selectedNote: $selectedNote)
 case .list:
 NoteSelectionListView(notes: notes(),
 selectedNote: $selectedNote)
 }
 }
 } else {
 ContentUnavailableView("Please select a folder",
 systemImage: "folder")
 }
} detail: {
 ...
}

I created two separate files for the table and grid versions. I used a similar structure to the existing
NoTeSelectionListView. The view requires two parameters: an array of notes and a binding to the selected
note:

struct NoteSelectionListView: View {
 let notes: [Note]
 @Binding var selectedNote: Note?

 var body: some View {
 …
 }
}

struct NoteSelectionTableView: View {
 let notes: [Note]
 @Binding var selectedNote: Note?

 var body: some View {
 …
 }
}

struct NoteSelectionGridView: View {
 let notes: [Note]
 @Binding var selectedNote: Note?

 var body: some View {
 …
 }
}

3 7 9

For the table layout, I used 4 columns for the notes title, content, creation date and isFavorite. Because
Table takes a binding to Note.ID for the section, but I want to handle this data with Note types, I am
creating a custom binding in the body property. This converts from Note to Note.ID back and forward:

struct NoteSelectionTableView: View {
 let notes: [Note]
 @Binding var selectedNote: Note?

 var body: some View {
 let binding = Binding(
 get: { self.selectedNote?.id },
 set: { id in
 if let note = notes.first(where: { $0.id == id }) {
 self.selectedNote = note
 } else {
 self.selectedNote = nil
 }
 }
)

 return Table(notes, selection: binding) {
 …
 }
 }
}

For the grid layout, I used adaptive GridItems to create a responsive design, which works particularly well
on macOS where window sizes can vary significantly. I wrapped each note in a VStack and adjusted the
frames to get the backgrounds to display correctly. I also aligned the grid items to the top for
consistency.

struct NoteSelectionGridView: View {

 let notes: [Note]
 @Binding var selectedNote: Note?

 let columns = [GridItem(.adaptive(minimum: 150, maximum: 300),
 alignment: .top)]
 var body: some View {
 ScrollView {
 LazyVGrid(columns: columns, content: {
 ForEach(notes) { note in
 VStack(alignment: .leading) {
 Text(note.title)
 .font(.title3)
 Text(note.creationDate, style: .date)
 .font(.caption)
 Divider()
 Text(note.content)
 }
 .frame(maxWidth: .infinity, alignment: .leading)
 .padding()
 .background(
 RoundedRectangle(cornerRadius: 15)
 .fill(Color.white)
 .stroke(selectedNote == note ? Color.accentColor :
Color.clear,
 lineWidth: 1)
 .shadow(radius: 5))

3 8 0

 .onTapGesture {
 selectedNote = note
 }
 }
 })
 }
 .contentMargins(15)
 }
}

To handle selection in the grid layout, I used an onTapGesture. When a note is selected, I added a
different stroke to highlight it with a blue border.

I hope you found this challenge enjoyable and informative. Through exercises like this, you can see the
versatility of system layouts and how you can apply them to your own apps. Whether it’s with lists, forms,
hierarchical lists, disclosure groups, and more, there are numerous possibilities at your disposal. Plus,
with some practice and these tips in hand, you’ll find it’s quite straightforward to get started.

3 81

	1. Working with SwiftUI in Xcode
	1.1 Showing previews in Xcode
	1.2 Working with the Canvas in Xcode
	1.3 Quick and Efficiently Edit SwiftUI Views
	1.4 Debugging layout issues
	1.5 SwiftUI Tree of Doom
	1.6 Typical problems with Xcode and swiftui and how to fix them

	2. Primitive Layout Components
	2.1 VStack, HStack and ZStack
	2.2 Divider and Spacer
	2.3 Group
	2.4 GroupBox
	2.5 ControlGroup

	3. Layering Views
	3.1 Background Modifier
	3.2 Overlay modifier
	3.3 ZStack vs background/overlay
	3.4 Color view
	3.5 Gradients
	3.6 Materials

	4. Positioning Views
	4.1 How to position views
	4.2 Alignment Guides
	4.3 Custom Alignment Guides
	4.4 Grid View
	4.5 Position and Offset Modifiers

	5. Sizing Views
	5.1 How the layout system sizes and positions views
	5.2 Fixed and Flexible Frames
	5.3 FixedSize
	5.4 Layout Priority
	5.5 Sizing Text Views
	5.6 Sizing Images
	5.7 Upscaling images and Bitmap vs Vector graphics
	5.8 Sizing System Icons
	5.9 AsyncImage

	5.10 Aspect Ratio
	5.11 Scale Effect
	5.12 Content Edges: Safe area, Padding and Margins
	5.13 Container Relative Frame
	5.14 CornerRadius, Clip and Mask
	Challenge 🖐️ Superhero Detail View

	6. Reusable Layout Components
	6.1 Making Your SwiftUI Views More Reusable
	6.2 Reusable View Modifiers
	6.3 ButtonStyle
	6.4 Custom Container Views
	6.5 Custom Containers with Dynamic Data

	7. Custom Layout
	7.2 GeometryReader
	7.3 Example: Custom Container with GeometryReader
	7.4 PreferenceKeys
	7.5 Bounds Measurement with PreferenceKeys and GeometryReader
	7.6 Layout Protocol
	7.7 Layout Example: Equal Width HStack and VStack
	7.8 Layout Example: Flow Layout
	7.9 Layout Example: Radial Layout
	7.10 Custom Layout with Layout Priority
	7.11 Custom Layout for Image Gallery

	8. Dynamic Data
	8.1 ForEach
	8.2 identifiable Data
	8.3 Making Enums Identifiable
	8.4 ForEach with Binding
	8.5 LazyVStack and LazyHStack
	8.6 Lazily Showing Images
	8.7 Smooth ScrollViews with Images

	8.8 LazyVGrid and LazyHGrid
	8.9 Image Gallery with LazyVGrid and LazyHGrid
	8.10 Infinitive Loading View
	Challenges 🖐️

	9. ScrollView
	9.1 Why Use ScrollView?
	9.2 CustomizIng The Appearance of ScrollView
	9.3 Scroll Direction
	9.4 Scroll Content Size
	9.5 Scroll Behaviour
	9.6 Programmatic Scrolling with ScrollViewReader
	9.7 ScrollView Position
	9.8 Synchronizing Multiple ScrollViews
	9.9 Default Scroll Position

	9.10 ScrollView Animations with ScrollTransition
	9.11 Animations with VisualEffect
	9.12 Parallax Example
	9.13 Background Parallax Effect

	9.14 Pinned Views
	Challenge 🖐️ ScrollView
	Custom Picker View Challenge

	10. Adaptive Layout
	10.1 Why You Need Adaptive Layout
	10.2 What is the Available Space
	10.3 Interface Size Classes
	10.4 Environment Values
	10.5 Environment vs PreferenceKeys
	10.6 Dynamic Type Size
	10.7 Scaled Metric
	10.8 Conditional View Modifiers
	10.9 AnyLayout - Switching Between Layout Containers
	10.10 ViewThatFits
	10.11 ViewThatFits Example 1
	10.12 ViewThatFits Example 2
	10.13 ViewThatFits Example 3

	10.14 Keyboard Layout Adjustments
	10.15 Keyboard & Background Image
	10.16 Keyboard & Forms
	10.17 Keyboard toolbar

	10.18 Summary Responsive Design
	10.19 Summary Adaptive Design

	11. Special System Containers
	11.1 OverView of System Containers
	11.2 Adding macOS Target
	11.3 List
	11.3.1 ListStyle
	11.3.2 List Row Background
	11.3.3 List Row Insets and Separators
	11.3.4 Move and Delete
	11.3.5 List Selection
	Challenge 🖐️ NavigationSplitView with Lists

	11.4 Structuring Lists
	11.4.1 Sections
	11.4.2 Collapsable Sections
	11.4.3 Hierarchical Lists

	11.5 Form
	11.5.2 Example: Settings View
	11.5.3 Example: Registration Form
	11.5.4 Example: Inspector

	11.6 Table
	11.6.1 Creating a Table with SwiftUI
	11.6.2 Table Styling
	11.6.3 Edit Table Data
	11.6.4 Selecting Table Rows
	11.6.5 Sorting and Filtering
	11.6.6 DisclosureTableRow
	11.6.7 Cross-platform
	Challenge 🖐️ Layout Variations

