THE ULTIMATE SWIFTUI
LAYOUT COOKBOOK

LIMITED FREE EDITION

KARIN PRATER
r < |

Py

AR
1 " ‘1 \%\\»’,\,--'f/f‘;.
‘ * 7 : <\
. r
./‘ -

1. Working with SWiftUl in Xcode c.ccccceucenceecececcaccnceecsesscsscsscsscscsscsscsscsessessesaes 5

1.1 Showing previews in Xcode..........uoiiiiiiiiiiiiei it e e e e e e e e eeaaaes 5
1.2 Working with the Canvas in Xcodeccoveiiiiiiiiiiiiiiiiiiiiee e, 10
1.3 Quick and Efficiently Edit SwiftUl Viewsooovviiiiiiiiiiiiicceeee e 15
1.4 Debugging layout iSSUEScccvviiiiiiiiiiiiiie e e 17
1.5 SWiftUI Tree of DOOM ..ccoiiiiiiiiiiiiiiiiiiiiiiiiiii e e e e e e e e e e e e e e e e e e aaaaaeas 20
1.6 Typical problems with Xcode and swiftui and how to fix them............................... 22

2. Primitive Layout Components.....................Q...........Q...........000000000000000000000024

2.1 VStack, HSEAck and ZSHACKeneeeeeeee e 24
2.2 Divider And SPACETuuiieieeeeeeeeeeeee s 27
2.3 GrOUP ceuiiiiiiie ettt ettt ettt et et et et et et saaeaueaaeaneta et e et et e e eannns 30
2.4 GroUPBOX. .. iiiiiiei it e et e e e et e eeta e eaaan 31
2.5 CONFOIGIOUP c.uuuiiieeiiiee et e e e e et e e e e e e et e e e e eeeataeeeeessannnnaeeeeeesnns 33
3. Layering VieWsS.cccccececsesecocscsesecscscsesscscscsssssscscsesssscsssessssssesssssssssssssssssesesssse 35
3.1 Background Modifier...........ooooiiiiiiiiiiii e 35
3.2 Overlay modifier........ccooeiiiiiiiiiiiciee e e e 39
3.3 ZStack vs background/overlayc.coooiiiiiiiiiiii 41
3.4 ColOr VIBW .. et e e e et e e e e e et e e e e e aa b e e e e eaaaa e aaaeaaans 43
3.5 Gradientscoeiiiiiiiiieeee e e e e e et e e e e e e eeeeaaaaaaaas 45
3.6 Materials......ccooiiiiiiiiiiee e e e e e e e e e e e e aaa e 47

4. POSitioning Views ...50

4.1 HOW 10 POSHION VIBWS ...iiiuiiiiiiiiiiiieiiiiie et eetieeeetie e etieeeeaieeeaaeeeaaeeeeaaeeannneennnns 50
4.2 AlIgNment GUIESccoiiiiiiiiiiiiee e e e e e e e e e e e e e e as 50
4.3 Custom Alignment GUIdes...........cceeiiiiieiiiiiiiiiee e e e e e 50
A4 Grid VIEW...oooiiieeieeeiicee ettt e e e e ettt e e e e e eaat e e e e esaasneeeeeeraaaannns 50
4.5 Position and Offset Modifiers.............ooooiiiiiiiiiiiiiiiceee e 50
5. SiZIiNG VIEWS ceeterececscsesacscscsesacscsesesscscsesesscscsessssssesesssssssssssssssesessssssssessssssss 51
5.1 How the layout system sizes and positions VIews..............ceeeieiiiiiieeiieiiiiieeeeeeennens 51
5.2 Fixed and Flexible Framescoooriiiiiiiiii e 51
5.3 FIXEASIZE .. oot iiiiiiiiieeeee ettt e e e e e e e aa e e 51
5.4 Layout Priority...ccouue ittt e et e et e e e e e aa e eaes 51
5.5 SIizing Text VIEWSiieiiiiiiiii ettt eeee et e eees 51
5.6 SIZING IMAQGES «.euniiiiiiiiii ettt et et et e e e e e e e e e e e e eaan s 51

5.7 Upscaling images and Bitmap vs Vector graphicsccooevviiiiiiiieeeeieeeeceniinnnnns 51

5.8 Sizing System ICONSovnniiiiiiii e 51
5.9 ASYNCIMAQGE ..cciiiiiiiiiiiei ettt ette e e e et e e e et e e ear e e aea e e 51
5.T0 ASPECt RANO ...uiiiiiiiiiieiiiie ettt et e e et e e eaa e e eaaeseanaseaannneenes 51
511 Scale EFFect ..o.ooovviiiiiieee e 51
5.12 Content Edges: Safe area, Padding and Margins........cccceeeeveieeeeeeeeeeeeennnnnnnnnnnnn. 51
5.13 Container Relative Framecooooiiiiiiiiiiiiiiiee e 51
5.14 CornerRadius, Clip and Mask...........cooueeiiiiiiiiii e 51
6. Reusable Layout COMPONENtS ccceceececcececsececsesscscsscsesscsssscsesscsssscsssscsessesese 52
6.1 Reusable View Modifierscoouviiiiiiiiiiiiiiiiiirrrrseee e e e e e e 52
6.2 Custom Container VIBWS.......uiiiuiiiiiiiiiieeeiie ettt ettt e et e et e eenae e 52

7. Adaptive Layout ...53

7.1 Environment ValUes........cooooiiiiiiiiiiiiiiiee et eeeeet s e e e e e e e eeeeeaaaaaaes 53
7.2 VIeWTROIFItS ..o e e e e e e e e e e e e eeeeraaeannes 53
7.3 Condition@l LAyOoutcouuiiiiiiiiiiee e e e e e e eaaaes 53
8. DYNAmMIc DatQ..cceceececececscsesecscscsesscscscsesscscscsesssscscsesscscsssesssscsssessssssssssssscscss 54
B.1 FOrEQCh ... e e e e e e 54
8.2 Lazy Loading in 1-dimension: LazyVStack and LazyHstack...........ccceeeevviiiiiinnnnnnnnn 54
8.3 Lazy Loading in 2-dimension: LazyVGrid and LazyHGrid............ccooeeiiiiiiiiiinnnnnnas 54
8.4 Image Gallery ..o e e aaaes 54

9. scrOIIView ..55

Q.1 SCroll DIr€CHON.ccviieeeeiiiee e e e e et e e e et e e e e et eeeaa e 55
9.2 Scroll Content SIZE......cuuniiiiiiiieieeee e 55
9.3 SCroll BERAVIOUT......coveeieiiieeeeee e 55
9.4 Scroll Offset and Programmatic Scrolling............ueuuueiuiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee, 55
9.5 ScrollView animationsoouuiiiiiiiiiei e e 55
10. Special System ContaiNErS..cccccccececsecscsecscsscscsscscsscscsscsesscsssscssssssessssssscsess 56
TO.2 LISt ceeiiiiee ettt e e e et ee e e e e e ettt e e e e e ettt e e eeaaabaaaeeeeabanaaaeeerraan 56
TO.3 TABIEVIEW....ceeeeeeeeiee et e e e e e et e e e e aae e 56
L0 B oY ¢ 1 PPN 56
10.5 Section and SUBVIEWSccooviiiiiiiiiiiiiiiee e e eeeeaae 56
.. 56

Thank you for reading this free book!

You can get the full book at swiftyplace.com which includes all
project files you see in this book.

THE ULTIMATE SWIFTUI
LAYOUT COOKBOOK

FIRST EDITION
KARIN PRATER

Get the book with_ 50% OFF

https://school.swiftyplace.com/courses/the-ultimate-swiftui-layout-cookbook?coupon=PreSale
https://school.swiftyplace.com/courses/the-ultimate-swiftui-layout-cookbook?coupon=PreSale
https://school.swiftyplace.com/courses/the-ultimate-swiftui-layout-cookbook?coupon=PreSale
https://school.swiftyplace.com/courses/the-ultimate-swiftui-layout-cookbook?coupon=PreSale

1. WORKING WITH SWIFTUI IN XCODE

1.1 SHOWING PREVIEWS IN XCODE

In this section, | will guide you on effectively working with Xcode for SwiftUl. Previews have changed with
Xcode 15 and use now the Preview macro, whereas before you had to use the PreviewProvider. | will give

you examples of both of these features.

Bg | < ContentView.swift LayeredView.swift ContentView.swift
& TestProject) TestProject) ContentView.swift) No Selection
struct ContentView: View { P

var body: some View {
ScrollView {
VStack(spacing: 20) {
TitleView(title: "This is the title")

Image(systemName: '"globe")
.imageScale(.large)
.foregroundStyle(.tint)

Text("Hello, world!")
.foregroundStyle(Color("textColor"))
.padding(.horizontal)

.border(.red)

Button("this is a button") {
print("you pressed the button")

}
.blur(radius: 3.0)
.background(Color.yellow)

LayeredView()

}
.padding()
}
}
}
40 #Preview {
ContentView() ol

}

Showing and Hiding the Canvas

PreviewStateView.swift

) Preview (Line 40)

This is the title

&

[Hello, world!

this is an example text
this is an example text
this is an example text
this is an example text

this is an example text
this is an example text
this is an example text
this is an example text
this is an example text

this is an example text

preview provider

QQ @ @

By default, the canvas is not shown on the right side. To show or hide the canvas, go to the top-right
corner and click on the inspector. You can also use the keyboard shortcut Option + Command + Return.

Sometimes, when you make changes to your code, the preview may not refresh properly or may not be
visible. In such cases, you can use the keyboard shortcut Option + Command + P to recreate the

preview.

By default, the layout is set to automatic. You can choose between having the canvas on the right or
below the editor by selecting the appropriate option. This allows you to maximize the space based on

your preferences and the size of the views.

TestProject
I”J)

main TestProject) [J iPhone 15 Pro Clean Succeeded | 26.09.23 at 14:53 + [:B
o | € » ContentView.swift 3 LayeredView.swift 3 ContentView.swift % PreviewStateView.swift Z =0 [
TestProject) =& TestProject) 3 ContentView.swift) No Selection Show Editor Only
struct ContentView: View { v Canvas
var body: some View { Assistant
ScrollView {)
VStack(spacing: 20) { Automatic Layout >
TitleView(title: "This is the title")
Canvas on Right Inline Comparison
Image(systemName: "globe") VA Lol e ull v Side By Side Comparison
.imageScale(.large)
.foregroundStyle(.tint) Minimap
Text("Hello, world!") Authors
. foregroundStyle(Color("textColor")) Code Coverage
.padding(.horizontal)
.border(.red) Invisibles
DS) Preview (Line 40) preview provider v Wrap Lines
f -— \
This is the title
O ™ % S) Automatic - iPhone 15 Pro v Q @Q @ &

Preview Macro

The new preview macro has made it simpler and shorter in Xcode previews and is available for Xcode 15:

#Preview {
ContentView()
}

When you generate a new file, such as using the SwiftUl view template, Xcode automatically generates a
preview section for that file.

If your project's minimum deployment target is lower than iOS 17 or macOS 14, you need to add a
version check before the preview:

@available(i0S 17.0, mac0S 14.0, tv0S 17.0, watch0S 10.0, x*)
#Preview {

ContentView()
}

When working with multiple previews, it is important to ensure that you pass the correct arguments to the
views. You can generate multiple previews by using the “preview” macro multiple times. Each preview

6

can only specify one view. If you need to test different input values, you can create multiple previews with
varying arguments.

import SwiftUI

struct TitleView: View {
let title: String
var body: some View {
Text(title)
.font(.largeTitle)
.bold()
.underline()

}

#Preview("short title") {
TitleView(title: "Hello world")
}

#Preview("Long title") {
TitleView(title: "This is a very, very, very long title")

}
X) short title Long title DS short title () Long title
Hell Id This is a very, very, very
oM &8 & O Q Q @ Q oOmsx 8 0 QA QA QQ

To organize your previews, you can give them names. This helps in distinguishing between different
previews and provides a clear description of their purpose.

Additionally, you can set traits. In the below example, | used a “sizeThatFitsLayout”. This is useful when

you have very small views and you don’t want to show them on a device. Note that this only works when
you are in the selectable preview.

#Preview("short title") {
TitleView(title: "Hello world")
}

#Preview("Long title") {
TitleView(title: "This is a very, very, very long title")
b

#Preview("medium title", traits: .sizeThatFitsLayout) {
TitleView(title: "This is a title")

$ (O short title Long title medium title $ short title (O Long title medium title 3 short title Long title (O medium title
Hello world This |§ avery, very,very ThIS IS a tltle
e long title
® 0 8 0 QQ @ Q ® 0O 3 & 0 QQ a e ®0 & 0 QA e

Here is a list of all the available traits:
- fixedLayout(width: CGFloat, height: CGFloat) and sizeTahtFitsLayout
- portrait and portraitUpsideDown

- landscapeleft and landscapeRight

PreviewProvider

You may come across the preview provider if you are working with an older project that started before
Xcode 15.

struct ContentView_Previews: PreviewProvider {
static var previews: some View {
ContentView()
¥

You can show multiple previews in the canvas:

struct ContentView_Previews: PreviewProvider {
static var previews: some View {
Group {
ContentView()
.previewLayout(.sizeThatFits)
ContentView()

The preview can be customized by adding preview modifiers:

struct ContentView_Preview: PreviewProvider {
static var previews: some View {
ContentView()
.previewLayout(.sizeThatFits)
.previewDisplayName("preview provider")

¥
}
Modifier for minimum size .previewLayout(.sizeThatFits)
Modifier for fixed size .previewLayout(.fixed(width: 600, height: 200))
Set specific device type .previewDevice(PreviewDevice(rawValue: "iPhone 8"))
Set display name tab .previewDisplayName('"show Iphone 8")

Change Environment variables:

Change to dark mode .environment(\.colorScheme, .dark)

Change dynamic text .environment(\.sizeCategory, .accessibilitylarge)

1.2 WORKING WITH THE CANVAS IN XCODE

In this section, we will explore the various features and options available in the Canvas in Xcode. The
Canvas provides a real-time preview of your SwiftUl layout, allowing you to quickly iterate and test your
designs.

JICVIC | O Ay
. 2 . s 1

pln _> X (5 short title Long title medium title
)

D
Hello world
(> 888 S [J Automatic - iPhone 15 Pro v Q Q@ @ @
/ \ zoom
life preview variants
selectable

At the bottom of the Canvas, you will find a range of options to enhance your previewing experience.
Let’s take a closer look at each of these features:

Zooming and Fit on Screen

On the right side of the Canvas, you can find options to zoom in or fit the layout on the screen. These
options help you view your design more closely or fit it to the available space.

10

Device Preview

The toggle next to the zoom options allows you to select the device for the preview. By default, the
preview matches the device selected for your run target.

~

P :!':?Prmect TestProject) [J iPhone 15 Pro Clean Succeeded | Today at 14:50 1 + [:D
8 < 3 PackageTestView.swift 3 CustomUIView.swift 3 TitleView.swift) PreviewStateView.swift 2 ColorView.swift S Package.swil & =[] ([
@ TestProject) i TestProject) 3 TitleView.swift) No Selection

// TitleView.swift

// TestProject $ (3 short title () Long title) medium title

//
// Created by Karin Prater on 28.08.2023.

g 2
import SwiftUI
struct TitleView: View {

let title: String
var body: some View {

0 Text(title)
.font(.largeTitle)
.bold()
. .underline()
}
}
#Preview("short title") {
0 Titleview(title: "Hello world") Hello world
}

#Preview("Long title") {
TitleView(title: "This is a very, very, very long title")
}
Pavailable(i0S 17.0, mac0S 14.0, tvO0S 17.0, watchOS 10.0, x*)
29 #Preview("medium title", traits: .landscapelLeft) {
TitleView(title: "This is a title")
}

®© 0D 3 & | 0 Automatic - iPhone 15 Pro v Q Q @ &

However, you can choose to manually select a specific device or let Xcode automatically switch the
preview based on your run target.

// TitleView.swift

// TestProj ect $ (O short title) Long title) medium title
1/

// Created by Karin Prater on 28.08.2023.

1/

import SwiftuI

struct TitleView: View {
let title: String
var body: some View {

0 Text(title)
.font(.largeTitle)
.bold()
.underline()
i }
}
#Preview("short title") {
0 Titleview(title: "Hello world") Hello world
} v [Automatic - iPhone 15 Pro

#Preview("Long title") {
Titleview(title: "This is a very, very, very long title") [iPhone 15 Pro

}

@ iPhone Dynamic Island
@ iPhone Touch ID

QPavailable(iOS 17.0, macOS 14.0, tv0S 17.0, watchOS 10.@ [J iPhone 15 Pro
29 #Preview("medium title", traits: .landscapelLeft) { @ iPhone 15 Pro Max g iPad 11-inch
3 3 3 o n 3 3 9 n iPad 12.9-inch
Titleview(title: "This is a title") @ iPhone 15
¥ [iPhone 15 Plus
[iPhone SE 3rd generation D Karins iPhone 2
[Karins iPhone
D iPad Pro 11-inch, 4th generation 0 iPad von Karin Prater
D iPad Pro 12.9-inch, 6th generation More >
D iPad 10th generation
[Automatic - iPhone 15 Pro v QU Q @ Q
D iPad Air 5th generation
= [iPad mini 6th generation Line: 29 Col: 48 (D)

Real Device Preview

In addition to the built-in device previews, you can also use your actual iOS device to preview your
SwiftUl layout. To enable this feature, you need to install the Xcode Previews app on your device and
allow it in developer mode. Please note that there may be some connectivity issues, so ensure your
device is plugged in for a reliable connection.

Device Settings

The “Device Settings” option allows you to customize the preview environment further. You can set
specific color schemes, test landscape or portrait orientations, and even experiment with dynamic type
sizes. These settings help you ensure your layout adapts well to different scenarios.

// TitleView.swift
// TestProject S shorttitle (5) Long title medium title

// Created by Karin Prater on 28.08.2023.

import Swiftul
Canvas Device Settings
struct TitleView: View {
let title: String

var body: some View { Color Scheme 2
] Text(title) , Light Appearance A
font(Largerit1e) 5 a very, very, very
15 .bold() [} [} &
.underline() H
} Orientation (\ Itle

}

Portrait
© Landscape Left
Landscape Right

)) Dynamic Type ‘)
#Preview("Long title") { %

TitleView(title: "This is a very, very, ver
long title")

#Preview("short title") {
TitleView(title: "Hello world")
}

}

@available(iOS 17.8, macOS 14.8, tv0S 17.0, O @ & || & f| B Automatic-iPhone 15 Pro v RAQ QR

Variants

To make testing and debugging more efficient, Xcode offers variants for color schemes, orientations,
and dynamic type sizes. By enabling variants, you can compare different options side by side and
quickly identify any issues or inconsistencies in your layout.

= short title Long title medium title 2 short title Long title medium title
f -)
This is a very, very, very. This is a very, very, very long title Thi very,verylo
long 1
Landscapeleft = Landscap e Righ

This is a very, very, very This is a very, very, very

long title long title

Color Scheme Variants

 Orientation Variants
Dynamic Type Variants

[CHOREH] = [Automatic - iPhone 15 Pro v [CHOH =3 [Automatic - iPhone 15 Pro v

Selectable Preview

In the canvas area choose the second button in the bottom left corner to use the selectable preview
feature. You can double-click on a specific view to highlight the corresponding code in the editor. This
feature is particularly useful when working with complex views or collections, as it helps you identify

which code snippets correspond to which views.

/7
import SwiftuUI

struct ControlGroupExampleView: View {
var body: some View {
VStack(spacing: 50) {

HStack {
Button("First") { }
Button("Second") { }
Button("Third") { }

R

ControlGroup("Control Group", systemImage: "grear") {
Button("First") { }
Button("Second") { }
Button("Third") { }

ControlGroup("Control Group", systemImage: "grear") {
Button("First") { }
Button("Second") { }
Button("Third") { }

.controlGroupStyle(.compactMenu)
ControlGroup("Control Group", systemImage: "grear") {
Button("First") { }
Button("Second Second") { }
Button("Third") { }
}
.controlGroupStyle(PinkControlGroupStyle())

Spacer()
}.padding()

Live Preview

g () Preview (Line 61)

First Second Third

Second

Control Group

First
Second Second

Third

Q a aq

[Automatic - iPhone 15 Pro v

The live preview feature is handy for testing animations and interactions in real time. It allows you to see
how your views respond to user interactions, such as tapping a button or scrolling a scroll view.

/7
import SwiftUI

struct ControlGroupExampleView: View {
var body: some View {
VStack(spacing: 50) {

HStack {
Button("First") { }
Button("Second") { }
Button("Third") { }

ControlGroup("Control Group", systemImage: “grear") {
Button("First") { }
Button("Second") { }
Button("Third") { }

¥

ControlGroup("Control Group", systemImage: "“grear") {
Button("First") { }
Button("Second") { }
Button("Third") { }

.controlGroupStyle(.compactMenu)
ControlGroup("Control Group", systemImage: “grear") {
Button("First") { }
Button("Second Second") { }
Button("Third") { }
}
.controlGroupStyle(PinkControlGroupStyle())

Spacer()
}.padding()

13

g () Preview (Line 61)

First Second Third

Second

First Third
X

Second

Qa e

[Automatic - iPhone 15 Pro v

Debugging with Print Statements

To aid in debugging, the live preview also supports the use of print statements. You can add print
statements to your code and observe the output in the debug area of the preview. This helps you verify if
certain actions are being executed or if specific code paths are being triggered.

import SwiftUI

struct ContentView: View {
var body: some View {
ScrollView {
VStack(spacing: 20) {

Image(systemName: '"globe")
.imageScale(.large)
. foregroundStyle(.tint)

Text("Hello, world!")
. foregroundStyle(Color("textColor"))

.padding(.horizontal)
.border(.red)

Button("this is a button") {
print("you pressed the button")

0 .buttonStyle(.borderedProminent)

}
.padding()
}

you pressed the button

Previews

Auto ¢ S)

Executable

Pin Previews

88

g () Preview (Line 37) preview provider

Hello, world!

this is a button

oM 38 S 0

In Xcode, you have the option to pin previews. This allows you to work in the context of a specific view,
even when navigating between different files. Pinned previews are displayed at the top and can be easily
accessed for quick reference. If you want to remove pinned previews, simply tap on the pin button again.

//

// TestView.swift

// TestProject

//

// Created by Karin Prater on 26.09.23.

11

import SwiftUI

struct TestView: View {
var body: some View {

VStack {

TitleView(title: "Title View")

Text("this view uses another view")

}

#Preview {
TestView()
}

14

b ¢ Z Preview (TestView.swift:20)

Title View

this view uses another view

1.3 QUICK AND EFFICIENTLY EDIT SWIFTUI VIEWS

One of the challenges we often face with SwiftUl is locating the tools we need to make changes to our
views. It can be frustrating trying to figure out what can be modified and how to modify it.

SwiftUl Inspector

Simply control-click on an element and select “Show SwiftUl Inspector.” This brings up a panel where
you can quickly modify properties such as accessibility labels, paddings, frames, and even add additional
modifiers like blur effects. You can also find these modifications in the editor, where they are represented
as lines of code.

S
vy ji Text
I3 Teathroject Clean Succeeded | Today at 10:25 + (B
title
aw.swift :0deproj PreviewStateView.swift TitleView.swift

E¥ TestProject TestPri Modifiers

// Created by Accessibility

/! b= shorttitte () Long title Long title - landscape

|
Swiftul

Titlevi
title:
bodys

0 13 Text.' Large Title ae
8 Neight Inherited (2]

U
} Inherited &

Font

} Alignment = @0= 0 0O=

#Preview("shor
0 TitleView(
} Bold
#Preview("Long
TitleView(long title")

Underline
#Preview("Long
.sizeThatFit
TitleView(
} Padding

This is a very, very, very
long title

Frame

Attribute Inspector area

Another useful tool is the Attribute Inspector area, where you can find a list of arguments and modifiers
for a particular view. Here, you can scroll through and easily make changes to properties such as
accessibility labels, padding, and more.

w.swift ContentView.swift &3 TestProject.xcodeproj PreviewStateView.swift TitleView.swift

B8 TestProject TestProject Titleview.swift) [body

Swiftul
Titleview: View { i
title: String
body: View {
| 13 Tekt()
,IVJ‘J‘L':}lu“)“l;tlv) Font Large Title ae
.bold
.underline() Weight Inherited e
: } Color Inherited e
Alignment = = =
#Preview("short title") {
TitleView(: "Hello world") Line Limit
}
#Preview("Long title") {
TitleView(: "This is a very, very, very
long title")
#Preview("Long title - landscape", traits: Thls IS avery,very, Very_
.sizeThatFitsLayout) { H
Titleview(: "This is a title") l_oﬂnge
}
Padding
siz

15

Xcode Auto Suggestions

Xcode has also become smarter in suggesting modifiers based on the context. For example, when
working with a button, Xcode may suggest using a frame, navigation title, or padding. Similarly, when
working with text, it may suggest using a multiline text alignment. These suggestions can save you time
and effort in finding the right modifiers for your views.

struct TitleView: View {
let title: String
var body: some View {
Text(title)

} @ font(_ font:) >
} @ bold >
, @ bold(isActive

#Preview 3

1it1 D padding
[padding(insets

ontWeight weight
f Weigh igh

ro
ti [@ frame)
} M 15nal imis+ nimhar
#Previed font(_ font: Font?) —> Text
. si;eT Sets the default font for text in the view. very lo
} Tltl.CVJ.CW\LJ.LLCE Ly 15 a LtiLwe) I

Xcode Library

If you prefer a visual approach, you can utilize the Xcode library by clicking on the plus button. Here,
you’ll find a collection of icons, symbols, assets, colors, images, and code snippets. The library is
organized into categories such as modifiers, effects, layout, text, images, list, navigation, and styling. This
allows you to quickly browse through different options and easily add them to your code.

v Ies”‘pro]ed & TestProject) iPhone 15 Pro Clean Succeeded | Today at 10:25 + B
3 TestProject) @ TestProject) = TitleView.swift) [body
ot
(n]n) !
o | = [0 (& & ok
=== Control Group
E Toggle
struct ControlGroup<Content> where Content : View
) 18] Layout
115' You can provide an optional label to this view that describes its children. This view may be used in different
Control Group ways depending on the surrounding context. For example, when you place the control group in a toolbar item,
° 16 SwiftUl uses the label when the group is moved to the toolbar’s overflow menu.
ContentView()
Depth Stack .toolbar(id: "items") {
) ToolbarItem(id: “"media”) {
ControlGroup {
Geometry Reader x
y MediaButton()
ChartButton()
Horizontal Stack GraphButton()
} label: {
Label("Plus", systemImage: “plus")
Lazy Horizontal Grid }

}
}
Lazy Horizontal Stack
Open in Developer Documentation

By familiarizing yourself with these built-in tools and resources, you can save valuable time that would
otherwise be spent searching and googling for solutions. The documentation, in particular, can provide
inspiration and helpful code snippets to enhance your SwiftUl skills.

Lazy Vertical Grid

16

1.4 DEBUGGING LAYOUT ISSUES

Debugging layout issues with SwiftUl can be a challenging task. I’m here to guide you through some
helpful strategies that will make the process much easier.

Using the Selectable Preview

One useful tool for debugging layout issues is the inspector. By selecting a view, you can access
information about its size and other properties. For example, you can identify if there is excessive
padding causing unexpected spacing between views. By removing or adjusting the padding, you can
resolve the issue and achieve the desired layout.

Adding Borders And Background Colors

Additionally, if you have multiple views that could be causing the problem, such as text or buttons, you
can add borders or background colors to visually differentiate them. This allows you to pinpoint the
specific view that needs adjustment. By zooming in and examining the highlighted view, you can identify
any padding modifiers, frames, or offsets that may be causing layout inconsistencies.

t SwiftUI bI8 (%) Preview (Line 38) preview provider

t ContentView: View {
jar body: some View {
ScrollView {
VStack(spacing: 20) {

Image(systemName: "globe") -

.imageScale(.large)
.foregroundStyle(.tint)

Text("Hello, world!") ég?
. foregroundStyle(Color("textColor"))

.padding(.horizontal) i
.background(.yellow)| Hello, world!

Button("this is a button") { this is a button
}

print("you pressed the button")
.buttonStyle(.borderedProminent)

}
.padding()
.border(Color.green)

}

Debug View Hierarchy

Understanding the view hierarchy is crucial for debugging layout issues. SwiftUl provides a debug view
hierarchy feature that allows you to visualize the stack of views used in your project. By using this feature,
you can navigate through the hierarchy and gain insights into how views are structured.

For example, if you want to locate where a specific title is defined, you can use the debug view hierarchy.

By selecting the title, you can trace back to its parent views and identify the content view responsible for
its creation. This feature is especially helpful when dealing with layered views or complex layouts.

17

Run your project and select the “Debug View Hierarchy” button at the bottom of the Xcode window:

r i]
® ® [[] B) IilsntPrOJect €3 Te:) [] iPhone 15Pro Running TestProject on iPhone 15 Pro + (B
(
&= N Q A © & O B 8 < 3 LayeredView.swift 3 ContentView.swift 3 PreviewStateView.swift 2 20 ®
v TestProject M TestProject) & TestProject) i ContentView.swift) [@ body
v @ TestProject // »
9 TestProjectApp.swift import Swiftur $ @ Preview (Line 38) /) preview provider
} 3 ContentView.swift M
; : struct ContentView: View { *
l 3 LayeredView.swift var body: some View {] i
3 TitleView.swift M Scrolliew { Preview paused
3 PreviewStateView.swift A ° VStack(spacing: 20) { —
! G Assets.xcassets Image(systemName:
! = "globe")

> @& Preview Content :
.imageScale(.large)

.foregroundStyle(
.tint)

@

Hello, world!

this is a button

Text("Hello, world!")
. foregroundStyle
(Color
("textColor"))
.padding(
.horizontal) L
.background(
.yellow)

Button("this is a
button") {
print("you pressed
the button")

o ® & O Qa @ q

:
n huttanChulal

OE = ||

TestProject Line: 22 Col: 41 ()

o 8 <

+ &G

Xcode will pause the simulator and open the Debug View Hierarchy. In the left navigator pan you can
select the views and layers:

Y WIon LCIV WS

aoe)=)rOoroeor=m0O)O)O)O)O)O)O0O) 0O

@ Network Zero KB/s

v B UlWindowScene - (Foreground Active)
v [=) uIwindow
v D UlTransitionView
v D UIDropShadowView

v (5) Hosting View Controller

) Hosting View Controller

v [8] Hosting view Sl
v D ContentView
v D ScrollView<ModifiedContent<ModifiedContent<V...
v D SystemScrollViewContainer<ModifiedContent<...
v D _UnaryViewAdaptor<ModifiedContent<Modi...
v D SystemScrollView<ModifiedContent<Mo...
v [overlay

D _ShapeView<_StrokedShape<Recta...
v [Vertical Stack - Center Uy

v [Vertical Stack - Center

v [Vertical Stack - Center
v D Vertical Stack - Center

> [Background

[Text
0O image - B0 B Q&e
5 B & > &~ { 2 B8 > 8 9) @) [@ omach_msg2_trar [

Monitoring View Updates

Sometimes, you may encounter performance issues or frequent redrawing without understanding which
views are causing the problem. In such cases, it’s useful to monitor view updates and identify which
views are being recreated. You can achieve this by using the print changes statement:

struct TitleView: View {
let title: String

var body: some View {
Self._printChanges()
return Text(title)
.font(.largeTitle)
.bold()
.underline()

Thus, you can track how many times the view is recreated or updated. This can provide valuable insights
into the impact of changes on specific views.

By observing the print statements in the debugger, you can determine which views are being updated

and how often. This helps you understand the relationship between view updates and potential layout
issues.

19

1.5 SWIFTUI TREE OF DOOM

When working with SwiftUl, you may encounter situations where your views become large and
complex, leading to slow previews or unhelpful error messages from Xcode. This is commonly referred to
as the “tree of doom” in SwiftUl, where nesting levels can become overwhelming. Here are a few
strategies to work against this.

Extracting Subviews

To simplify the view hierarchy, you can use the “Extract Subview” feature by Ctrl-clicking on the
problematic view. This will extract the view into a separate subview. You can then rename it to something
more meaningful. Personally, | prefer moving these subviews to separate files rather than leaving them
within the same file. This way, | can easily navigate through each view file and see its preview directly. It
also prevents the subviews from getting lost amidst the main view code.

Small Views

Remember, it’s always beneficial to break down your views into smaller, more manageable pieces.
Personally, | find it helpful to keep the body of a view smaller than 100 lines. However, you should
experiment and find what works best for you, as everyone’s preferences and project requirements may
vary.

Code Highlighting

If you encounter long containers, such as a VStack with numerous subviews, it can be challenging to
identify where the container ends. To solve this, you can utilize Xcode’s highlighting feature. By clicking
on the curly braces at the beginning of the container, Xcode will highlight the corresponding closing curly
brace, indicating the end of the container. This helps in making changes or adding modifiers to the
container.

import SwiftUI
struct LayeredView: View {

let text = "this is an example text"
var computedValue: String {

"check something"
}

var body: some View {
VStack {

Text(text)
Text(text)
Text(text)
Text(text)
// Text(text)

26 VStack {)
Divicfer()
Textitext)
Text(text)
Text(text)
Text(text)
Text(text)

}

Divider()
Text(text)

}
}

#Preview {
LayeredView()

20

Folding Ribbons

In cases where your code extends beyond the visible area, you can make use of the code folding ribbons.
These ribbons allow you to hide or show specific sections of your code, making it easier to focus on the
relevant parts.

import SwiftUI
struct LayeredView: View {
let text = "this is an example text"

var computedValue: String {
"check something"

}
var body: some View {
18 VStack {|===}
k }
#Preview {

LayeredView()

To enable or disable the ribbons, go to Xcode settings, specifically the “Text Editor” area, and toggle the
“Show Code Folding Ribbons” option.

R Tacsneainas \ == o _ineaiaas A Ao livinsnstlBasssinvetsscr R Lo
@ Text Editing
i & @ 8 © L @ g B
t General Accounts Behaviors Navigation Themes Text Editing Key Bindings Source Control Platforms Locations

Display Editing Indentation
]

Show: Line numbers

Code folding ribbon

Code structure when scrolling

Mark separators

Dim inactive code

Code coverage iteration counts
Page guide at column:

Highlight instances of selected symbol
Delay: 0,25 seconds

Documentation Comments: Fade doc comment delimiters

Fade doc comment markup delimiters

Line Wrapping: Wrap lines to editor width

Indent wrapped lines by: 2 spaces

Editor Overscroll: ~Medium §&J

1 [Automatic - iPhone 15 Pro v

By simplifying your complex SwiftUl views, you can enhance the performance of previews, reduce errors,
and make your code more maintainable. So, don’t just rely on Xcode’s default behavior, take control of
your code and make it more understandable and efficient.

21

1.6 TYPICAL PROBLEMS WITH XCODE AND SWIFTUI AND
HOW TO FIX THEM

Sometimes, while working with Xcode and SwiftUl, you may encounter certain issues that can be a bit
frustrating. Unfortunately, Xcode doesn’t always provide the most informative error messages. In this
section, | will walk you through some common scenarios for errors, explain why they occur, and show you
how to resolve them.

Invalid Redefinition of View Names

One error that you might come across is when you have a view with the same name declared multiple
times. For instance, if you copy a struct called “LayeredView” to your ContentView, you will get an error
message saying “invalid redeclaration of LayeredView.” This error occurs because you have already
declared a view with the same name. To fix this, you can use the search function to locate the duplicate
view and rename it accordingly.

Uninitialized Properties

Another issue you might encounter is when you have a property declared within a struct but it is not
initialized. Xcode will display an error message stating “property declared as object return type but has no
initializer.” To resolve this error, you need to provide an initial value for the property. Even if it’s just a
placeholder like a Text view, it will help Xcode infer the underlying type correctly.

Missing Return Value for Text Views

Similarly, you might face problems when using Text views. If you don’t return anything within the body
property, an error will be thrown. For example:

import SwiftUI
struct TitleView: View {
let title: String
var body: some View { © Property declares an opaque return type, but...

} @ Missing return in accessor expected to return 'some View'

To fix this, make sure to return a view within the body property. You can use a Text view with some
content, even if it’s temporary. However, it’s best practice to declare constants or computed values
outside of the body property for better code organization.

22

Missing Environment Objects in SwiftUl Previews

If you use environment objects in your views or subviews, make sure to also add them in the preview.
Similarly, you need to inject a context when working with CoreData or SwiftData:

#Preview {
ContentView()
.environment (MyViewModel())
.environment(\.managedObjectContext, NewContext())

Troubleshooting Tips
If you encounter persistent issues and can’t figure out the problem, here are a few troubleshooting tips:

1. Uncomment the views you just created and implement them one by one to identify any potential
errors.

2. Clean the build folder by going to Product > Clean Build Folder and then rebuild your project.
3. Sometimes, running the project instead of relying solely on the preview can help resolve issues.

4. In extreme cases, restarting Xcode or even your Mac might be necessary to resolve stubborn
issues.

Overall, Xcode previews with the Canvas feature are incredibly useful and can save you a lot of time. In
the upcoming lessons, you will see how these previews can streamline your development process by
eliminating the need to build and run your project repeatedly.

23

2, PRIMITIVE LAYOUT COMPONENTS

2.1 VSTACK, HSTACK AND ZSTACK

VStack - Vertical Stacking

VStack is a container view that arranges its child views vertically. To create a VStack, you can use the
“Embed in VStack” option after control-clicking on the view. By default, a VStack adjusts its size to fit its
child views. The size of the VStack is determined by the space occupied by its children.

You can customize the alignment and spacing of the child views within the VStack. For example, you can
align the views to the leading edge and set a spacing of 20 between them. Additionally, you can nest
multiple VStacks to create more complex layouts.

VStack(alignment: .center,
spacing: 10) {

Text("first item")
.background(Color.yellow)

Text("second item")
.background(Color.red)

Text("third item")
.background(Color.gray)

Jeading .center trailing

first item first item first item

T =R
third item

HStack - Horizontal Stacking

HStack is a container view that arranges its child views horizontally. Similar to VStack, you can use the
"Embed in HStack” option to create an HStack. The alignment property of an HStack determines how the
child views are aligned vertically.

You have various alignment options available such as center, top, bottom, first text baseline, and last text
baseline. These options allow you to align the child views based on their text baselines or other criteria.
By changing the font size or adding different-sized views, you can observe the effects of alignment within
an HStack.

HStack(alignment: .firstTextBaseline,
24

spacing: 10) {

Text("first item”)
.background(Color.yellow)

Text("second item")
.background(Color.red)

Text("third item")
.background(Color.gray)

.center first item - ‘
top
first item

first item

.bottom

ZStack - overlay stacking

ZStack is a container view that stacks its child views on top of each other, creating a layered effect. The

order in which the child views are added to the ZStack determines their stacking order, with the first view
being the furthest behind.

You can adjust the stacking order using the zindex view modifier or by changing the order of the child

views. Additionally, you can customize the alignment of the child views within the ZStack, such as top,
leading, center, or combinations of them.

ZStack(alignment: .center) {
Text("first item")
.padding(.vertical, 20)
.background(Color.yellow)
.zindex(2)

Text("second item")
.padding(.vertical, 10)
.background(Color.red)

Text("third item")
.background(Color.gray)

You can also use the alignment property to align the views within the ZStack.

For Text views, you might also want to use .leadingLastTextBaseline, and .trailingFirstTextBaseline
etc.

25

topLeading topTrailing

Jeading .center trailing
.bottomLeading .bottom .bottomTrailing

ZStacks are particularly useful when you want to overlay views on top of each other. You can use them to
create visually appealing effects, such as combining images with text or applying gradients and
backgrounds.

struct CatExampleView: View {
var body: some View {
ZStack(alignment: .bottomLeading) {
ResizableImageView(imageName: "cat_1")

Text("Cats are awesome")
.font(.title).bold()
.background(Color.white)
.padding()

Cats are awesome

26

2.2 DIVIDER AND SPACER

In this section, we will explore two fundamental layout views in SwiftUl: dividers and spacers. These
views play a crucial role in organizing and structuring your user interface.

Imagine you have a VStack with various pieces of information. You want to visually separate two specific
views within this stack. To achieve this, you can simply add a Divider. This will create a thin line between
the two views, providing a clear visual distinction. Depending on whether you place the divider in a
VStack or an HStack, it will appear as a horizontal or vertical line respectively. SwiftUl is smart enough to
adapt the appearance of the divider based on its container stack.

struct DividerExampleView: View {
var body: some View {
VStack {
Text("Hello, World!'")

Divider()
Text("some details for this view")

HStack {
Text("First")
Divider()
Text("Second")

}

// .fixedSize()

by

Hello, World!

some details for this view

First Second

Dividers, being a “greedy” view, strive to occupy as much space as possible. This means they expand to
fill the available space in the layout. For instance, if you want to minimize the height of the divider and

have it only as tall as the two text views, you can use the fixedSize() modifier.

27

HStack {
Text("First")
Divider()
Text("Second")

}

.fixedSize(horizontal: false, vertical: true)

First Second

By applying the fixedSize() modifier, the divider’s height is constrained to match the height of the views it
separates, resulting in a more compact appearance.

Moving on to Spacer, they are incredibly useful for controlling the distribution of space within a layout. A
spacer view takes up all the available space in a given axis and pushes the surrounding views
accordingly.

Imagine you have a vertical stack and you want to position it at the top of the screen instead of the
default center alignment. To achieve this, you can use a spacer to expand the stack’s height and push it
to the top.

Spiderman

Spider-Man, also known as Peter Parker, is a
fictional superhero created by writer Stan Lee and
artist Steve Ditko for Marvel Comics. Peter Parker
was bitten by a radioactive spider during a science
exhibition, granting him incredible powers. He took
on the identity of Spider-Man to use his newfound
abilities to fight crime and protect New York City.

Spiderman

Spider-Man, also known as Peter Parker, is a
fictional superhero created by writer Stan Lee and
artist Steve Ditko for Marvel Comics. Peter Parker
was bitten by a radioactive spider during a science

exhibition, granting him incredible powers. He took
on the identity of Spider-Man to use his newfound
abilities to fight crime and protect New York City.

28

struct SpacerExampleView: View {
let superhero = SuperHero.example
var body: some View {
VStack(alignment: .leading) {
Text(superhero.name)
.font(.title)
Text(superhero.biography)

Spacer()

By adding the Spacer view, it occupies the remaining space at the bottom of the screen and pushes the
stack upwards, aligning it with the top edge.

Spacers can also be used to adjust the spacing between views. For example, if you have three buttons
arranged horizontally, you can add spacers between them to control their positioning.

HStack(spacing: 0) {
Spacer(minLength: 0)
Button("First") { }
Spacer(minLength: 10)
Button("Second") { }
Spacer(minLength: 10)
Button("Third") { }
Spacer(minLength: 0)

In this case, the spacers distribute the available space evenly between the buttons, resulting in a visually
appealing layout. Alternatively, you can use the Color view as a spacer by setting its background color
to match the desired spacing.

Using dividers and spacers in your SwiftUl layouts allows for greater flexibility and adaptability across
different screen sizes.

29

2.3 GROUP

In SwiftUl, groups are container views that do not handle the layout of their children. Instead, the layout is
determined by the container view they are placed in, such as an HStack or VStack. However, groups offer
a convenient way to apply the same view modifier to all their children individually.

Where groups shine is their ability to apply view modifiers to multiple child views simultaneously.
Let's say you want to add a yellow background to all the text views. With a group, you can simply
apply the background modifier to the group:

Group {
Text("First")
Text("Second View")
Text("Third View")

b
.background(Color.yellow)

First
Second View
Third View

Unlike when using a VStack or HStack, where the background modifier would be applied to the entire
stack, the group allows you to apply the same modifier to each individual child view. This can be
incredibly convenient, especially when you want to avoid duplicating code.

Another use case for groups is when you have conditional code that requires specific view modifiers. For
example, let’s say you want to display a different view based on whether a user is logged in or not:

struct GroupExampleView: View {
let isLoggedIn: Bool
var body: some View {

VStack {
Group {
if isLoggedIn {
Text("Thank you for signing up")
} else {
Text("You need to log in to get access")
}
}

. foregroundStyle(Color.blue)

In this case, applying the foregroundColor modifier directly to the conditional code would result in a
crash. However, by wrapping the condition in a group, you can apply the modifier without any issues.

To summarize, groups in SwiftUl do not handle the layout of their children. Instead, they rely on the
container view they are placed in to handle the layout. However, groups provide a convenient way to

30

apply the same view modifier to all their children individually, making your code more efficient and
avoiding unnecessary repetition.

2.4 GROUPBOX

In SwiftUl, there are various container views available for organizing and styling your interface. One such
container is the GroupBox. Unlike the basic Group view, which doesn’t apply much styling, the GroupBox
allows you to create card-like layouts with ease.

To use a GroupBox, you simply define a title or label and the content you want to display. You can also
apply some padding to enhance the styling. The label is typically displayed in a headline font style, giving
it a prominent appearance.

struct GroupBoxExampleView: View {

@State private var userAgreed: Bool = false

let agreementText: String = "Lorem ipsum dolor sit amet, consectetur adipiscing
elit. Aliquam fermentum vestibulum est. Cras rhoncus. Pellentesque habitant mobi
tristique senectus et netus et malesuada fames ac turpis egestas.”

var body: some View {
GroupBox(label: Label("End-User Agreement",
systemImage: "building.columns"),
content: {
Text(agreementText)
.font(.footnote)

Toggle(isOn: $userAgreed) {
Text("I agree to the above terms")
b
)

.groupBoxStyle(.automatic)
.padding()

<>

fm End-User Agreement

Lorem ipsum dolor sit amet, consectetur adipiscing
elit. Aliquam fermentum vestibulum est. Cras rhoncus.
Pellentesque habitant mobi tristique senectus et
netus et malesuada fames ac turpis egestas.

| agree to the above terms

31

In SwiftUl, many container views have specific styling modifiers tailored to their functionality. You can also
create your own custom styling for the GroupBox. By conforming to the GroupBoxStyle protocol, you
can define a unique appearance and interaction for all GroupBox instances within your view hierarchy.

struct OrangeGroupBoxStyle: GroupBoxStyle {
func makeBody(configuration: Configuration) —> some View {
VStack(alignment: .leading) {
configuration. label
.font(.title)
configuration.content
I
.padding()
.background(
RoundedRectangle(cornerRadius: 5.0)
.fill(Color.orange)
.shadow(radius: 5)

In this custom styling example, we can use a VStack to create multiple GroupBox instances with different
titles and contents. By applying our orange group box style to these instances, we can see the visual
transformation.

GroupBox(titleText) {
Text(agreementText)
b

.groupBoxStyle(OrangeGroupBoxStyle())

End-User Agreement

Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Aliquam fermentum
vestibulum est. Cras rhoncus. Pellentesque
habitant mobi tristique senectus et netus
et malesuada fames ac turpis egestas.

While GroupBox may not be one of the most commonly used views, it can be invaluable in creating
visually appealing card-like layouts. Especially in complex apps with numerous subviews, using
GroupBox can help break down information and provide a more intuitive user experience.

32

2.5 CONTROLGROUP

In SwiftUl, control groups are a powerful tool for adding specific styling to control views, such as buttons,
that you want to group together. Control groups allow you to create a cohesive and visually appealing
layout for your user interface.

To create a control group, you can use the ControlGroup view. Let’s compare putting buttons in a HStack
vs. a ControlGroup:

HStack {
Button("First") { }
Button("Second") { }
Button("Third") { }
}

ControlGroup("Control Group", systemImage: "grear") {
Button("First") { }
Button("Second") { }
Button("Third") { }

First Second Third

First Second Third

In this example, we have three buttons grouped together within a control group. By wrapping the buttons
in a control group, they are visually styled as a cohesive unit. You can still interact with each button

individually, but they appear as a single entity.

Control groups also offer various styling variations. For example, you can use system-provided styles like
compactMenu to display the control group as a menu:

ControlGroup("Control Group", systemImage: "grear") {

by

.controlGroupStyle(.compactMenu)

Third
Second
First Second Third First
Control Group
.compactMenu .palette

33

Control groups are particularly useful when you have a set of controls that you want to reuse in multiple
places within your app. They automatically adjust their layout based on their placement, making it easy to
maintain a consistent design throughout your user interface.

You can also customize the styling of a control group by creating a custom control group style. Here’s an
example:

struct EqualSizControlGroupStyle: ControlGroupStyle {
func makeBody(configuration: Configuration) —> some View {
VStack {
configuration.content
. foregroundColor(.white)
.padding(.vertical, 5)
.padding(.horizontal, 10)
. frame(maxWidth: .infinity)
.background(
RoundedRectangle(cornerRadius: 5)
.fill(Color.accentColor)
)
}

.fixedSize(horizontal: true, vertical: false)

Here is how you can use your custom Group Styling:

ControlGroup("Control Group", systemImage: "grear") {
Button("First") { }
Button("Second Second") { }
Button("Third") { }

I
.controlGroupStyle(EqualSizControlGroupStyle())

This group will place all its children in a VStack and add background rectangles that have all the same
width:

First

Second Second

Third

34

3. LAYERING VIEWS

In this section, we will explore the concept of layering views in SwiftUl. Layering views allows us to create
visually appealing and dynamic user interfaces by combining multiple elements together. | will cover
various techniques and modifiers that enable us to control the order and appearance of views within our
layouts.

Throughout this section, | will dive into the following key topics:

- Background Modifier: Learn how to set a background color or image for your views, providing a solid
foundation for your Ul elements.

« Overlay Modifier: Discover how to overlay additional views on top of existing ones, allowing for
creative design choices and visual enhancements.

« ZStack container can be used to layer views. | covered this in a previous section

- ZStack vs Background/Overlay: Understand the differences between using a ZStack and applying
background/overlay modifiers, and when to choose one over the other.

« Color View and Gradients: Explore different ways to apply colors to your views, from solid colors to
gradients. These views are often used for backgrounds and overlays.

« Materials: Discover how to apply materials effects to your view background.

3.1 BACKGROUND MODIFIER

The background modifier in SwiftUl allows to add a background to a view. We can easily add a

background to this text by applying the background modifier and specifying a view, such as a color,
image, or shape for the background:

Text("Hello, World!")
.padding()
.background {

Color.cyan
¥

Text("Cats are awesome")
.padding()
.background {
Image("abstract-pool-water")

.resizable()
.scaledToFill()

}

.clipped()

Text("More")
.padding(.horizontal)
.background {
Capsule().fill(Color.cyan.gradient)
¥

35

The great thing about the background modifier is that it fills out the background of the view it is attached
to without increasing the size of the view itself, unlike the ZStack. This makes it perfect for color
backgrounds. If you want to make the view larger, you can use other modifiers like padding or
frame.

In addition to colors, you can also use images as backgrounds. By using the resizable modifier, you can
resize the image to fit the available space in the background. You can also use the scaleToFill modifier to
maintain the aspect ratio of the image while filling the background. To prevent the image from
overflowing, you can use the clipped modifier.

Shapes can also be added as backgrounds. For example, you can add a capsule with a gradient fill using
the background modifier.

SuperHero Example Card

Now, let’s move on to a more interesting example. Imagine we want to create a superhero card view. We
can define a SuperheroView struct conforming to View and add an image of the superhero along with
their name. By applying the background modifier, we can add a color or gradient background to the view.
To achieve a card-like appearance, we can use the cornerRadius modifier or a rounded rectangle shape.

struct SuperHeroView: View {
let superhero = SuperHero.example2
var body: some View {
ResizableImageView(imageName: superhero.imageName)
.padding([.leading, .topl)
.background(alignment: .topLeading) {
Text(superhero.name)
.font(.largeTitle)
-bold()
. foregroundStyle(.white)
.padding()
b
.background (
RoundedRectangle(cornerRadius: 15)
.fill(Color.cyan.gradient)
)

.compositingGroup()

36

.shadow(radius: 10)
.padding()

The size of the view depends on the image size by default. You can also add multiple background
modifiers to further enhance the visual appeal of the card.

It’s worth mentioning that when applying the background modifier, the order of modifiers becomes
crucial. For example, if you want to add text on top of the image, you need to ensure that the text is
placed before the background modifier.

Additionally, you can use the alignment parameter to control the alignment of the background within the
view. | used this parameter to align the superhero tex to the top leading edge.

To handle safe areas, the background modifier provides the ignoresSafe AreaEdges parameter. This
allows you to extend the background into the safe areas.

.background(Color.cyan, ignoresSafeAreaEdges: .top)

Background Styles and Shapes

In iOS 15 and macOS 12, Apple introduced new background styles and shapes. You can use these to
create more visually appealing backgrounds. There are more convenient ways to place shapes behind a
view with the background modifier where you can give a ShapeStyle (e.g. a color or gradient) and a
shape:

37

Text("Capsule with a gradient background")
. foregroundStyle(.white)
.padding()
.background(Color.cyan.gradient, in: Capsule())

Capsule with a gradient background

This can be separated out into two modifiers:

VStack {
Text("background style")
.padding()
.background(in: RoundedRectangle(cornerRadius: 5))
b
.padding()

.background(Color.yellow)

background style

You can set the background style independently for example to change the color of a GroupBox:

GroupBox {
Text ("GroupBox")
¥

.backgroundStyle(Color.cyan.gradient)

38

3.2 OVERLAY MODIFIER

In SwiftUl, we have the overlay modifier, which allows us to place views on top of another view. Similar to
the background modifier that places views behind a certain view, overlay lets us layer views on top.

ResizableImageView(imageName: "cat_1")
.overlay(alignment: .bottomLeading) {
Text("Cats are awesome")
.font(.title).bold()
.background(Color.white)
.padding()

Let’s consider another example using a superhero image. Suppose we have a separate
SpiderManProfilelmageView that displays a profile image of Spider-Man. We can use the overlay modifier

to add a white border around this view:

struct SpidermanProfileImage: View {
var body: some View {

Image("spiderman_profil")
.resizable()
.scaledToFill()
.frame(width: 200, height: 200)
.clipShape(Circle())
.shadow(radius: 5)

.overlay {
Circle().stroke(Color.white, lineWidth: 5)

In this example, we specify the frame size once for both the clipped circle shape and the overlay. They
perfectly align with each other.

39

Just like with the background modifier, we have options for styling and alignment. Most of the time, you’ll
use the overlay modifier with content or alignment. Additionally, you can overlay a whole shape, such as a
circle:

.overlay(alignment: .bottomLeading) {
Text("Spider-Man")
b

.overlay(Color.white.opacity(@0.5), in: Circle())

.overlay(Color.yellow, ignoresSafeAreaEdges: .top)

40

3.3 ZSTACK VS BACKGROUND/OVERLAY

In SwiftUl, there are different techniques available to achieve layering of views: background, overlay, and
stack. Each of these techniques has its own purpose and considerations. Let’s explore the differences

between them and when to use each approach. To illustrate these concepts, let’s use an example from a
previous lesson.

Text("Cats are awesome")
.padding()
.background {
Image("abstract-pool-water")

.resizable()
.scaledToFill()

b

.clipped()

The main view is the text view saying “Cats are awesome”. In its background, we have an image view
that show a water pool. The size of the view is defined by the text itself and the padding.

The background, on the other hand, doesn’t influence the size of the view but uses the size of the

view it is attached to and passes it down to its child views. As a result, the image only receives the same
size as the text.

Now, let’s explore how the layout changes when we overlay the text and image using a ZStack. We'll
need to adjust the image to fit and position the text on top of it.

ZStack {
Image("abstract-pool-water")
.resizable()
.scaledToFit()
Text("Cats are awesome")

.padding()
}
The ZStack considers the size of all its child views. In this ¢ F o2 * ;r?"’-i
case, the image is scaled to fit, making it as large as possible Y 51 ’wﬁiﬁ@gl

within the horizontal direction. The ZStack adapts its size to
accommodate the largest child view, which, in this case,
is the image view.

41

When choosing between background, overlay, and ZStack, the decision depends on how you want to
control the size of your views. Lets add a color gradient to the above ZStack:

ZStack {
Image("abstract-pool-water")
.resizable()
.scaledToFit()

LinearGradient(colors: [Color(white: 0.9, opacity: 0.5),
Color(white: @, opacity: 0.7)1],
startPoint: .top,
endPoint: .bottom)

Text("Cats are awesome")
.font(.largeTitle)
.padding(.leading)

}
.padding()

However, you may notice that the linear gradient takes up a lot of space and tries to be as big as
possible. Consequently, the ZStack adjusts its size to accommodate the largest child view, which, in this
case, is the linear gradient.

To restrict the size of the gradient to match the image, using an overlay modifier is a better solution. By
moving the gradient inside the overlay, its size no longer influences the layout, and the image and
gradient can have the same size.

ZStack {
Image("abstract-pool-water")
.resizable()
.scaledToFit()
.overlay {
LinearGradient(colors: [Color(white: ©0.9, opacity: 0.5),
Color(white: @, opacity: 0.7)1],
startPoint: .top,
endPoint: .bottom)

}

Text("Cats are awesome'")
.font(.largeTitle)
.padding(.leading)

b
.padding()

42

Another solution is to use the fixedSize modifier to the ZStack and restrict the size in the vertical
direction. This way the gradient would not expand more than the image size:

ZStack {
Image(...)
LinearGradient(...)
Text(..)

}

.fixedSize(horizontal: false, vertical: true)

In some cases, using an overlay modifier instead of a ZStack makes more sense, especially when you
want to ensure that the layout is determined by a specific view’s size. The background and overlay
modifiers allow you to align or resize views relative to other views without affecting the overall layout.

To summarize, when layering views in SwiftUl, consider whether you want views to be properly sized and
take up the space they need or if they are secondary and should align or resize with other views. Views
that need to be properly sized can be placed in the background or overlay, while views that should align

or resize with other views can be placed in a ZStack.

3.4 COLOR VIEW

Colors play a crucial role in creating visually appealing and dynamic user interfaces, and SwiftUl makes it
incredibly easy to work with them. Let’s start by understanding a fundamental concept: colors are views
themselves. This means that we can treat colors just like any other view and use them within our view
hierarchies. For example, we can add a blue color to a VStack as a view, and it will expand to occupy as
much space as possible. We can also use other colors like cyan and indigo in a similar manner.

To restrict the expansion of colors, we can apply a frame modifier to set a specific height or width. For

instance, we can limit the height of our color views to 100 by adding a frame modifier with a height of
100.

Color.cyan
.frame(height: 100)

It’s worth noting that colors conform to the ShapeStyle protocol, allowing us to use them as backgrounds
with the background modifier. However, if we use a color gradient like

Color.cyan.gradient

it becomes an AnyGradient and is not considered a view. If you want to use a gradient as a view, use it
to fill a shape like:

Rectangle().fill(Color.cyan.gradient)

43

indigo indigo.gradient

Another use case for colors is filling shapes with a filled shape style. For example, we can use a gradient
as a shape style within a background to create visually appealing effects.

In addition to using predefined colors, SwiftUl also provides various options for creating custom colors.
We can generate colors using hue, saturation, brightness, red, green, and blue values, or even create
semi-transparent colors with a specific opacity. These custom colors offer great flexibility in designing our
interfaces.

Color(hue: 0.7, saturation: 1, brightness: 1) // bright blue

Color(hue: 1, saturation: 1, brightness: 0.9, opacity: 0.5) // opace pink
Color(red: 1, green: @, blue: @) // red

Color(white: @, opacity: 0.5) // opace gray

Example: Image Selection Screen

To demonstrate the usage of colors, let’s consider an example. Imagine we have a board displaying
multiple images, and we want to highlight the selected images by adding a semi-transparent overlay.

44

We can achieve this by creating a reusable subview, which takes an image name and a boolean value
indicating whether it is selected or not. By leveraging the overlay modifier, we can apply the semi-
transparent color to the selected images.

struct ImageSelectionView: View {
let imageName: String
let isSelected: Bool
var body: some View {
ResizableImageView(imageName: imageName)
.overlay(alignment: .bottomTrailing) {
if isSelected {
ZStack(alignment: .bottomTrailing) {
Color(white: 1, opacity: 0.5)

Image(systemName: '"checkmark.circle.fill")
. foregroundColor(.accentColor)
.padding(1)

.background(Color.white, in: Circle())
.padding()

To further enhance the selected images, we can add a checkmark icon to indicate their selection status.
By using the overlay modifier with a bottomTrailing alignment, we can position the checkmark icon
precisely where we want it. Additionally, we can add a circle shape behind the image to create a visual
distinction.

HStack(spacing: 0) {
ImageSelectionView(imageName: 'dog_1",
isSelected: false)
ImageSelectionView(imageName: "cat_1",
isSelected: true)
ImageSelectionView(imageName: "horse_1",
isSelected: false)

By combining overlays, backgrounds, and alignments, we can create visually appealing and interactive
user interfaces. Experimenting with different variations of these techniques will allow you to fine-tune the
appearance of your views.

Remember, colors can significantly impact the size and layout of your views. Using overlays and
backgrounds judiciously will help maintain the desired visual balance without compromising the overall
design.

3.5 GRADIENTS

Gradients like colors are ‘greedy’ views and will expand to the available space. SwiftUl provides different
types of gradients such as linear, radial, angular, and elliptical gradients. Here are some examples:

45

HStack(spacing: 1) {
Rectangle().fill(Color.cyan.gradient)

LinearGradient(colors: [Color.red, Color.cyan, Color.indigo],
startPoint: .toplLeading,
endPoint: .bottomTrailing)

RadialGradient(colors: [Color.red, Color.cyan, Color.indigo],
center: .center,
startRadius: 0,
endRadius: 100)

AngularGradient(colors: [Color.red, Color.cyan, Color.indigo, Color.red],
center: .center, angle: .degrees(90))

}
. frame(height: 100)

Example: Making Text more Readable

A common use case is to add text on top of an image. Oftentimes this makes the text very difficult to
read.

ZStack(alignment: .bottomLeading) {
Image("cat_4")
.resizable()
.scaledToFit()

Text("Cats are awesome")
.font(.largeTitle)
. foregroundStyle(.white)
.padding(.leading)
b

You can use a gradient that is placed behind the text to increase the contrast. In the below example, |
restricted the size of the gradient to a height of 100 points:

ZStack(alignment: .bottomLeading) {
Image(...)

LinearGradient(colors: [Color(white: 0, opacity: 0),
Color(white: @, opacity: 0.5)],
startPoint: .top,
endPoint: .bottom)
. frame(maxHeight: 100)

Text(..)

46

This is especially useful if you have high-contrast images like the below winter image:

Cats are awesome

with opace black gradient

3.6 MATERIALS

Materials in SwiftU can be used to enhance the legibility, readability, and contrast of your views. Materials
provide an alternative approach to using colored backgrounds, allowing you to achieve a similar effect
with ease.

To better visualize the effect of materials, let’s use a ZStack as our example and add an image with high
contrast or distinct features, such as a water pool. | am placing text above with a ultra-thin material:

ZStack {
Image("abstract-pool-water")
.resizable()
.scaledToFill()

Text("ultraThinMaterial")
.padding()
.background(.ultraThinMaterial)

By using materials, you can achieve an iced glass effect where the details of the background shimmer
through. We can then apply different materials to the background to see their impact. There are five
materials available: thin, regular, ultra thin, thick and ultra thick.

47

:. g 't L\;..' e o "3 / B W
: “ o A NS .
* ultraThinMaterial E ultraThinMaterial ‘
s_il.."q T — ——
thinMaterial » -2

T OEREESY .

l regularMaterial B®* regularMaterial

thickMaterial thickMaterial

Landscape Left

From top to bottom, the materials range from the most transparent to the thickest. You can think of them
as different glass sheets with varying degrees of opacity. The choice of material depends on the desired
contrast and the foreground colors of your text. For example, a thicker material may provide better
contrast for certain text colors.

It’s worth noting that materials also work seamlessly in dark mode. When switching to dark mode, the
materials adapt automatically, providing a darker appearance. This can be particularly useful for
maintaining legibility across different color schemes. You can even use different images or add darker
sheets or gradients to achieve the desired effect in dark mode.

struct MaterialExampleView: View {
@Environment (\.colorScheme) var colorScheme
var body: some View {
ZStack {
Image("abstract-pool-water")
.resizable()

.scaledToFill()
if colorScheme == .dark {
Color.black.opacity(0.5)
}
HStack {
Text(..)
Text(..)
. foregroundStyle(.secondary)
¥

Remember, when presenting information, always ensure that the contrast between the text and the

background is sufficient for users to read comfortably. This consideration is especially important for
individuals with visual impairments. Materials, along with other techniques like gradients and semi-

transparent colors, can greatly enhance the readability of your views.

48

ultraThinMaterial

thinMaterial

regularMaterial

thickMaterial

ultraThickMaterial

Dark Appearance - Landscape Left

49

4. POSITIONING VIEWS

4

4

4

4

4

.1 HOW TO POSITION VIEWS

.2 ALIGNMENT GUIDES

.3 CUSTOM ALIGNMENT GUIDES

.4 GRID VIEW

.5 POSITION AND OFFSET MODIFIERS

THE ULTIMATE SWIFTUI
LAYOUT COOKBOOK

FIRST EDITION
KARIN PRATER

PRO

e

GET THE FULL BOOK

50

https://school.swiftyplace.com/courses/the-ultimate-swiftui-layout-cookbook?coupon=PreSale

5. SIZING VIEWS

5.1 HOW THE LAYOUT SYSTEM SIZES AND POSITIONS
VIEWS

5.2 FIXED AND FLEXIBLE FRAMES
5.3 FIXEDSIZE

5.4 LAYOUT PRIORITY

5.5 SIZING TEXT VIEWS

5.6 SIZING IMAGES

5.7 UPSCALING IMAGES AND BITMAP VS VECTOR
GRAPHICS

5.8 SIZING SYSTEM ICONS
5.9 ASYNCIMAGE

5.10 ASPECT RATIO

5.11 SCALE EFFECT

5.12 CONTENT EDGES: SAFE AREA, PADDING AND
MARGINS

5.13 CONTAINER RELATIVE FRAME

5.14 CORNERRADIUS, CLIP AND MASK

51

6. REUSABLE LAYOUT COMPONENTS

6.1 REUSABLE VIEW MODIFIERS

6.2 CUSTOM CONTAINER VIEWS

THE ULTIMATE SWIFTUI
LAYOUT COOKBOOK

FIRST EDITION
KARIN PRATER

PRO

e

GET THE FULL BOOK

52

https://school.swiftyplace.com/courses/the-ultimate-swiftui-layout-cookbook?coupon=PreSale

7. ADAPTIVE LAYOUT

7.1 ENVIRONMENT VALUES
7.2 VIEWTHATFITS

7.3 CONDITIONAL LAYOUT

THE ULTIMATE SWIFTUI
LAYOUT COOKBOOK

FIRST EDITION
KARIN PRATER

PRO

=

GET THE FULL BOOK

53

https://school.swiftyplace.com/courses/the-ultimate-swiftui-layout-cookbook?coupon=PreSale

8. DYNAMIC DATA

8.1 FOREACH

8.2 LAZY LOADING IN 1-DIMENSION: LAZYVSTACK AND
LAZYHSTACK

8.3 LAZY LOADING IN 2-DIMENSION: LAZYVGRID AND
LAZYHGRID

8.4 IMAGE GALLERY

THE ULTIMATE SWIFTUI
LAYOUT COOKBOOK

FIRST EDITION

KARIN PRATER

PRO

-

GET THE FULL BOOK

54

https://school.swiftyplace.com/courses/the-ultimate-swiftui-layout-cookbook?coupon=PreSale

9. SCROLLVIEW

9.1 SCROLL DIRECTION

9.2 SCROLL CONTENT SIZE

9.3 SCROLL BEHAVIOUR

9.4 SCROLL OFFSET AND PROGRAMMATIC SCROLLING

9.5 SCROLLVIEW ANIMATIONS

THE ULTIMATE SWIFTUI
LAYOUT COOKBOOK

FIRST EDITION

KARIN PRATER

PRO

-

GET THE FULL BOOK

55

https://school.swiftyplace.com/courses/the-ultimate-swiftui-layout-cookbook?coupon=PreSale

10. SPECIAL SYSTEM CONTAINERS

10.2 LIST
10.3 TABLEVIEW
10.4 FORM

10.5 SECTION AND SUBVIEWS

THE ULTIMATE SWIFTUI
LAYOUT COOKBOOK

FIRST EDITION

KARIN PRATER

PRO

=

GET THE FULL BOOK

56

https://school.swiftyplace.com/courses/the-ultimate-swiftui-layout-cookbook?coupon=PreSale

Thank you for reading this free book!

You can get the full book and video course at

swiftyplace.com which includes all project files you see in
this book.

'SWIFTUI LAYOUT -
MASTERY =
Course + Book

Get the book with_ 50% OFF

TTTTTTTTTTTTTTTTTT
OOOOOOOOOOOOOO

...........
lllllllllll

57

https://school.swiftyplace.com/courses/the-swiftui-layout-pro-pack?coupon=PreSale
https://school.swiftyplace.com/courses/the-ultimate-swiftui-layout-cookbook?coupon=PreSale
https://school.swiftyplace.com/courses/the-swiftui-layout-pro-pack?coupon=PreSale
https://school.swiftyplace.com/courses/the-swiftui-layout-pro-pack?coupon=PreSale

	1. Working with SwiftUI in Xcode
	1.1 Showing previews in Xcode
	1.2 Working with the Canvas in Xcode
	1.3 Quick and Efficiently Edit SwiftUI Views
	1.4 Debugging layout issues
	1.5 SwiftUI Tree of Doom
	1.6 Typical problems with Xcode and swiftui and how to fix them

	2. Primitive Layout Components
	2.1 VStack, HStack and ZStack
	2.2 Divider and Spacer
	2.3 Group
	2.4 GroupBox
	2.5 ControlGroup

	3. Layering Views
	3.1 Background Modifier
	3.2 Overlay modifier
	3.3 ZStack vs background/overlay
	3.4 Color view
	3.5 Gradients
	3.6 Materials

	4. Positioning Views
	4.1 How to position views
	4.2 Alignment Guides
	4.3 Custom Alignment Guides
	4.4 Grid View
	4.5 Position and Offset Modifiers

	5. Sizing Views
	5.1 How the layout system sizes and positions views
	5.2 Fixed and Flexible Frames
	5.3 FixedSize
	5.4 Layout Priority
	5.5 Sizing Text Views
	5.6 Sizing Images
	5.7 Upscaling images and Bitmap vs Vector graphics
	5.8 Sizing System Icons
	5.9 AsyncImage
	5.10 Aspect Ratio
	5.11 Scale Effect
	5.12 Content Edges: Safe area, Padding and Margins
	5.13 Container Relative Frame
	5.14 CornerRadius, Clip and Mask

	6. Reusable Layout Components
	6.1 Reusable View Modifiers
	6.2 Custom Container Views

	7. Adaptive Layout
	7.1 Environment Values
	7.2 ViewThatFits
	7.3 Conditional Layout

	8. Dynamic Data
	8.1 ForEach
	8.2 Lazy Loading in 1-dimension: LazyVStack and LazyHstack
	8.3 Lazy Loading in 2-dimension: LazyVGrid and LazyHGrid
	8.4 Image Gallery

	9. ScrollView
	9.1 Scroll Direction
	9.2 Scroll Content Size
	9.3 Scroll Behaviour
	9.4 Scroll Offset and Programmatic Scrolling
	9.5 ScrollView animations

	10. Special System Containers
	10.2 List
	10.3 TableView
	10.4 Form
	10.5 Section and SubViews
	———————————————————————————————————

