
SWIFTUI PERFORMANCE CHECKLIST
Bad Practice: Excessive Branching
-> every time the condition changes SwiftUI will

 recreate new views -> poor performance

-> loss of state

struct TreatView: View {
 var treat: Treat
 var body: some View {
 // Branching based on treat.isExpired
 if treat.isExpired {
 return Text("Expired Treat")
 } else {
 return Text("Fresh Treat")
 }
 }
}

Improved Practice: Ternary Operator
-> keep the same view identify but change its

properties

-> less calls to view body property

-> animations work between different states

struct TreatView: View {
 var treat: Treat
 var body: some View {
 Text(treat.isExpired ? ”Expired Treat” :
 ”Fresh Treat")
 }
 }
}

Improved Practice: Inert Modifers
-> keep the same view identify but change its

 properties

-> inert modifiers have cases that don't change

 the view appearance

struct ExpirationView: View {
 var date: Date
 var body: some View {
 Text(“Treat Expired”)

 .opacity(t date < .now ? 1 : 0)
 // Inert modifier instead of branching

 }

}

Bad Practice: Unnecessary AnyView Usage
-> loss of structural identity

-> SwiftUI can not efficiently update UI and will

 do more redraws

struct ContentView: View {

 @State private var showText = true

 var body: some View {

 ….

 }

 var body: some View {

 if showText {

 return AnyView(Text("Hello, SwiftUI"))

 } else {

 return AnyView(Image(systemName: "swift"))

 }

 }

}

Improved Practice: @ViewBuilder
-> return multiple views from a closure with

 @ViewBuilder

struct ContentView: View {

 @State private var showText = true

 var body: some View {

 ….

 }

 @ViewBuilder
 var body: some View {

 if showText {

 return Text("Hello, SwiftUI")

 } else {

 return Image(systemName: "swift")

 }

 }

}

Bad Practice: Excessive Branching

struct ExpirationView: View {
 var date: Date
 var body: some View {
 // Branching based on date
 if date < .now {
 Text("Expired Treat")
 } else {
 EmptyView()
 }
 }
}

 © 2024 swiftyplace.com

http://swiftyplace.com

VIEW IDENTITY

Bad Practice: Dynamic Identifiers
-> change identity of views

struct Pet: Identifiable {

 var name: String

 var id: UUID { UUID() } // dynamic identifier

}

ForEach(pets) { pet in

 PetView(pet: pet)

}

Improved Practice: Stable Identifiers
-> never change during run time

struct Pet: Identifiable {

 var name: String

 let id = UUID() // Stable identifier

}

ForEach(pets) { pet in

 PetView(pet: pet)

}

Bad Practice: Non-Unique Identifiers
-> multiple views with the same identity

struct Pet: Identifiable {

 var name: String

 var id: String { name }
 // uniqueness might not be guaranteed if

 multiple pets with same name are used

}

ForEach(pets) { pet in

 PetView(pet: pet)

}

Improved Practice: Unique Identifiers
-> all views can be uniquely identified

struct Pet: Identifiable {

 var name: String

 let id = UUID() // unique identifier

}

ForEach(pets) { pet in

 PetView(pet: pet)

}

Bad Practice: Dynamic and Non-Unique
Identifiers
-> multiple views with the same identity

@State var colors = [Color.red, Color.green,

 Color.blue]

 // dynamically can change the colors which are

 used as identifiers

ForEach(colors, id: \.self) {

 // might have multiple views with

 same color identifier

 ColorPicker("Color", selection: $0)

}

Improved Practice: Unique Identifiers -
> all views can be uniquely identified

struct ColorData: Identifiable {

 var color: Color

 let id = UUID() // stable and unique identifier
}

@State var colorData = [ColorData(color: .red,

 ColorData(color: .green)]

ForEach(colorData) {

 ColorPicker("Color",

 selection: $0.color)

}

Your data is so important that SwiftUI has a set of data-driven constructs that use the identity of your data as a
form of explicit identity for your views.

- Foreach

- confirmationDialog() / alert()

- List, Table / OutlineGroup

 © 2024 swiftyplace.com

http://swiftyplace.com

OPTIMIZE LIST AND TABLE PERFORMANCE

Bad Practice: Using Conditional Views Inside
ForEach
-> SwiftUI has to evaluate each condition to
determine the number of rows

ForEach(dogs) { dog in
 if dog.isFavorite {
 DogRow(dog: dog)
 }
}

Improved Practice: Filter outside the ForEach

-> List now has a constant number of views per
element, improving performance.

ForEach(viewModel.favoriteDogs) { dog in
 DogRow(dog: dog)
}

	Bad Practice: Inefficient identifier generation and variable view counts.

	Impact: Slow list and table updates.

	Improvement: Use constant view counts per data element. Avoid using AnyView and conditional views inside
ForEach.

Bad Practice: Complex Identifier Generation

Using complex logic to generate identifiers for list
rows can slow down your app

List(dogs, id: \.self) { dog in
 // If the Dog struct is complex, using it directly
 as an identifier can be expensive.
 DogRow(dog: dog)
}

Bad Practice: Nested ForEach

List has to retrieve identifiers for all nested ForEach
and the total number of rows

List {
 ForEach(toyCategories) { category in
 Text(category.name).bold()
 ForEach(category.dogs) { dog in
 DogRow(dog: dog)
 }
 }
 }
}

Improved Practice: Simple Identifiers

Use simple, unique properties for identifiers, such
as an id field, to speed up the list’s performance.

List(dogs, id: \.id) { dog in
 // Identifiers are now cheap to generate, leading
 to faster load and update times.
 DogRow(dog: dog)
}

Improved Practice: Avoid Type-Erasing Views

Keep the view types explicit within ForEach to
allow SwiftUI to optimize view updates.

List {
 ForEach(dogs) { dog in
 DogRow(dog: dog)
 }
}

Bad Practice: AnyView in List/ForEach
-> cannot determine the number of rows from the view
structural hierarchy

-> SwiftUI creates all views to retrieve row identifiers

ForEach(dogs) { dog in
 AnyView(DogRow(dog: dog))
 // SwiftUI does not know how many rows
 are shown for each dog
}

Improved Practice: Use Dynamic Sections

Use Nested ForEach together with Section

-> SwiftUI optimizes dynamic sections,

List {
 ForEach(toyCategories) { category in
 Section(header: Text(category.name)) {
 ForEach(category.dogs) { dog in
 DogRow(dog: dog)
 }
 }
 }
}

 © 2024 swiftyplace.com

http://swiftyplace.com

MINIMIZE UNNECESSARY VIEW UPDATES

Bad Practice: Unnecessary Dependency
-> view depends on a large data structure but only
uses a small part of it

struct Dog {

 var name: String

 let imageName: String

}

struct DogView: View {

 let dog: Dog
 // view updates when dog changes
 var body: some View {

 Image(dog.imageName))

 }

}

Improved Practice: Reduce Dependencies
-> reduces the view’s dependencies, leading to

fewer updates

struct Dog {

 var name: String

 let imageName: String

}

struct DogView: View {

 let dogImageName: String
 // the only dependency that is used in this view
 var body: some View {

 Image(dogImageName))

 }

}

SwiftUI updates views based on changes to their dependencies. To minimize unnecessary updates, carefully
consider the dependencies of your views and ensure that only the necessary dependencies are included.

Here are different types of view dependencies:

- @State,@Binding, @StateObject, @EnvironmentObject

- view properties

Improved Practice: New Observation Feature
-> reduces the view’s updates efficiently

@Observable class Dog {

 var name: String

 let imageName: String

}

struct DogView: View {

 let dog: Dog // only updates when property

 imagName changes

 var body: some View {

 Image(dog.imageName))

 }

}

Bad Practice: Unnecessary Dependency
-> view depends on a large data set

struct ContentView: View {

 @EnvironmentObject var vm: ViewModel
 // view updates when any property in view

 model changes

 var body: some View {

 Text(“Main Content”)

 …

 }

}

Improved Practice: Remove Dependencies
-> one use view models in subviews that need it

struct ContentView: View {

 // remove dependency to view model

 var body: some View {

 …

 }

}

struct RemoveDogView: View {

 @EnvironmentObject var vm: ViewModel
 var body: some View {

 Button(“Delete”) {

 vm.delete()

 }

 }

}

 © 2024 swiftyplace.com

http://swiftyplace.com

AVOID UNNECESSARY RECOMPUTATIONS IN BODY

Bad Practice: Filtering a data array in body
-> filtering will be done every time the view updates
-> inefficient

struct DogListView: View {
 var dogs: [Dog]

 var body: some View {
 List(dogs.filter { $0.isFavorite }) { dog in
 DogRow(dog: dog)
 }
 }
}

Improved Practice: Move filtering outside the
view or cache the results

class DogViewModel: ObservableObject {

 @Published var dogs: [Dog] = []

 @Published var favoriteDogs: [Dog] = []

 // favorites array is only updated when

 necessary and not every time the view is

 redrawn

 init(dogs: [Dog]) {

 self.dogs = dogs

 updateFavorites()

 }

 func updateFavorites() {

 favoriteDogs = dogs.filter { $0.isFavorite }

 }

}

struct DogListView: View {

 @ObservedObject var vm: DogViewModel

 var body: some View {

 List(vm.favoriteDogs) { dog in

 Text(dog.name)

 }

 }

}

The body should be as lightweight as possible because SwiftUI may call it frequently during the lifecycle of your
view. Expensive operations within body can lead to performance issues like slow rendering and unresponsive
user interfaces.

Impact: Slow updates and poor app responsiveness.

	Improvement: Move expensive operations out of body. Use asynchronous data fetching and cache results.

Bad Practice: Expensive operation in computed
property

struct DogListView: View {
 var dogs: [Dog]
 var favoriteDogs: [Dog] {
 // called every time the view updates
 allDogs.filter { $0.isFavorite }

 }

 var body: some View {
 List(favoriteDogs) { dog in
 DogRow(dog: dog)
 }
 }
}

Bad Practice: Filtering a data array in body
-> filtering will be done every time the view updates

import SwiftData

struct DogListView: View {
 @Query(sort: \Dog.name) var dogs: [Dog]

 var body: some View {
 List(dogs.filter { $0.isFavorite }) { dog in
 DogRow(dog: dog)
 }
 }
}

Improved Practice: Filter with Swiftata
-> filtering will be done efficient in the database

import SwiftData

struct DogListView: View {
 @Query(filter: #Predicate<Dog> {
 $0.isFavorite
 }, sort: \Dog.name) var dogs: [Dog]

 var body: some View {
 List(dogs) { dog in
 DogRow(dog: dog)
 }
 }
}

 © 2024 swiftyplace.com

http://swiftyplace.com

EXPENSIVE DYNAMIC PROPERTY INSTANTIATION

Bad Practice: @State property is initialized with
expensive operation
-> expensive and block the main thread

struct DogListView: View {
 @State var dogs = DogService.fetchAll()
 // expensive function call on main thread

 var body: some View {
 List(dogs, id: \.id) { dog in
 DogRow(dog: dog)
 }
 }
}

Improved Practice: Performing expensive
operations asynchronously

struct DogListView: View {
 @State private var dogs = [Dog]()

 var body: some View {
 List(dogs, id: \.id) { dog in
 DogRow(dog: dog)
 }
 .task {
 await DogService.fetchDogs()
 // use new task modifier to execute
 async function
 }
 }
}

Dynamic properties in SwiftUI, like @State or @EnvironmentObject, are powerful tools for managing app state.
However, if not used carefully, they can lead to expensive updates.

This is a summary of Best Practices from WWDC Talks

• WWDC21 Demystify SwiftUI

• WWDC23 Demystify SwiftUI Performance

 © 2024 swiftyplace.com

http://swiftyplace.com
https://developer.apple.com/videos/play/wwdc2021/10022/
https://developer.apple.com/videos/play/wwdc2023/10160

	Bad Practice: Excessive Branching
	-> every time the condition changes SwiftUI will
	recreate new views -> poor performance
	-> loss of state
	Improved Practice: Ternary Operator
	-> keep the same view identify but change its properties
	-> less calls to view body property
	-> animations work between different states
	Bad Practice: Excessive Branching
	Improved Practice: Inert Modifers
	-> keep the same view identify but change its
	properties
	-> inert modifiers have cases that don't change
	the view appearance
	Improved Practice: @ViewBuilder
	-> return multiple views from a closure with
	@ViewBuilder
	Bad Practice: Dynamic Identifiers
	-> change identity of views
	struct Pet: Identifiable {
	var name: String
	var id: UUID { UUID() } // dynamic identifier
	}
	ForEach(pets) { pet in
	PetView(pet: pet)
	}
	Improved Practice: Stable Identifiers
	-> never change during run time
	struct Pet: Identifiable {
	var name: String
	let id = UUID() // Stable identifier
	}
	ForEach(pets) { pet in
	PetView(pet: pet)
	}
	Bad Practice: Non-Unique Identifiers
	-> multiple views with the same identity
	struct Pet: Identifiable {
	var name: String
	var id: String { name }
	/ uniqueness might not be guaranteed if
	multiple pets with same name are used
	}
	ForEach(pets) { pet in
	PetView(pet: pet)
	}
	Improved Practice: Unique Identifiers
	-> all views can be uniquely identified
	struct Pet: Identifiable {
	var name: String
	let id = UUID() // unique identifier
	}
	ForEach(pets) { pet in
	PetView(pet: pet)
	}
	Bad Practice: Dynamic and Non-Unique Identifiers
	-> multiple views with the same identity
	@State var colors = [Color.red, Color.green,
	Color.blue]
	/ dynamically can change the colors which are
	used as identifiers
	ForEach(colors, id: \.self) {
	/ might have multiple views with
	same color identifier
	ColorPicker("Color", selection: $0)
	}
	Improved Practice: Unique Identifiers -
	> all views can be uniquely identified
	@State var colorData = [ColorData(color: .red,
	ColorData(color: .green)]
	ForEach(colorData) {
	ColorPicker("Color",
	selection: $0.color)
	}
	Bad Practice: Using Conditional Views Inside ForEach
	-> SwiftUI has to evaluate each condition to determine the number of rows
	Improved Practice: Filter outside the ForEach
	-> List now has a constant number of views per element, improving performance.
	Bad Practice: Complex Identifier Generation
	Improved Practice: Simple Identifiers
	Improved Practice: Use Dynamic Sections
	Bad Practice: Nested ForEach
	Bad Practice: AnyView in List/ForEach
	-> cannot determine the number of rows from the view structural hierarchy
	Improved Practice: Avoid Type-Erasing Views
	Bad Practice: Unnecessary Dependency
	struct Dog {
	var name: String
	let imageName: String
	}
	Improved Practice: Reduce Dependencies
	-> reduces the view’s dependencies, leading to fewer updates
	struct Dog {
	var name: String
	let imageName: String
	}
	Improved Practice: New Observation Feature
	-> reduces the view’s updates efficiently
	@Observable class Dog {
	var name: String
	let imageName: String
	}
	Bad Practice: Unnecessary Dependency
	Improved Practice: Remove Dependencies
	-> one use view models in subviews that need it
	Bad Practice: Filtering a data array in body
	-> filtering will be done every time the view updates -> inefficient
	Improved Practice: Move filtering outside the view or cache the results
	Bad Practice: Expensive operation in computed property
	Bad Practice: Filtering a data array in body
	-> filtering will be done every time the view updates
	Improved Practice: Filter with Swiftata
	-> filtering will be done efficient in the database
	Bad Practice: @State property is initialized with expensive operation
	-> expensive and block the main thread
	Improved Practice: Performing expensive operations asynchronously

